FLAME ATOMIC ABSORPTION SPECTROSCOPY Method Development ePrimer ## **CONTENTS** | 1. Introduction | 4 | Lu (Lutetium) | 28 | |--------------------------------|----|-------------------|----| | Agilent's Flame AA instruments | 4 | Mg (Magnesium) | 29 | | Fast Sequential AA | 4 | Mn (Manganese) | 30 | | PROMT | 6 | Mo (Molybdenum) | 30 | | Accessories | 6 | Na (Sodium) | 31 | | AA Supplies | 7 | Nb (Niobium) | 31 | | | | Nd (Neodymium) | 32 | | 2. Standard Conditions | 9 | Ni (Nickel) | 32 | | Ag (Silver) | 10 | Os (Osmium) | 33 | | AI (Aluminium) | 10 | P (Phosphorus) | 33 | | As (Arsenic) | 11 | Pb (Lead) | 34 | | Au (Gold) | 12 | Pd (Palladium) | 34 | | B (Boron) | 13 | Pr (Praseodymium) | 35 | | Ba (Barium) | 13 | Pt (Platinum) | 35 | | Be (Beryllium) | 14 | Rb (Rubidium) | 36 | | Bi (Bismuth) | 14 | Re (Rhenium) | 36 | | Ca (Calcium) | 15 | Rh (Rhodium) | 37 | | Cd (Cadmium) | 16 | Ru (Ruthenium) | 38 | | Co (Cobalt) | 17 | Sb (Antimony) | 38 | | Cr (Chromium) | 17 | Sc (Scandium) | 39 | | Cs (Cesium) | 18 | Se (Selenium) | 40 | | Cu (Copper) | 19 | Si (Silicon) | 40 | | Dy (Dysprosium) | 19 | Sm (Samarium) | 41 | | Er (Erbium) | 20 | Sn (Tin) | 41 | | Eu (Europium) | 20 | Sr (Strontium) | 42 | | Fe (Iron) | 21 | Ta (Tantalum) | 42 | | Ga (Gallium) | 21 | Tb (Terbium) | 43 | | Gd (Gadolinium) | 22 | Te (Tellurium) | 44 | | Ge (Germanium) | 22 | Ti (Titanium) | 44 | | Hf (Hafnium) | 23 | TI (Thallium) | 45 | | Hg (Mercury) | 23 | Tm (Thulium) | 45 | | Ho (Holmium) | 24 | V (Vanadium) | 46 | | In (Indium) | 25 | W (Tungsten) | 46 | | Ir (Iridium) | 25 | Y (Yttrium) | 47 | | K (Potassium) | 26 | Yb (Ytterbium) | 47 | | La (Lanthanum) | 27 | Zn (Zinc) | 48 | | Li (Lithium) | 27 | Zr (Zirconium) | 48 | | | | 1 | | | 3. Standard Conditions (Indirect Methods) | 49 | |---|-----| | Chloride, Cl | 49 | | Phosphate | 51 | | Sulfate, SO ₄ | 53 | | 4. Methodology | 55 | | Environmental | 55 | | Food & Agriculture | 58 | | Chemical | 63 | | Industrial | 66 | | Minerals | 72 | | Metallurgy | 83 | | Petroleum | 100 | | Safety Notices | 101 | | General References | 102 | ## 1. INTRODUCTION | Agilent's Flame AA instruments | 4 | |--------------------------------|---| | Fast Sequential AA | 4 | | PROMT | (| | Accessories | (| | AA Supplies | - | ### **Agilent's Flame AA instruments** Agilent offers a range of different Flame AA instruments, all designed to be productive, user-friendly and reliable. The instruments deliver the high performance that analysts require, while being equally at home in routine laboratories where reliability and simple operation are vital. The range includes: - 55B—ideal for any laboratory requiring an entry level AA system with advanced capabilities. The double-beam 55B AA features an LCD screen and dedicated keyboard for simple, stand-alone operation. - 240 AA—combines flexibility with reliable hardware, providing budget-sensitive users with a high performance AA for routine flame/furnace/vapor analyses. - 240FS AA—a fast and productive flame AA system with 4-lamp Fast Sequential operation doubling sample throughout and dramatically reducing running costs. Able to handle multi-element suites with ease, which are ideal for food and agriculture or any high throughput labs. - 280FS—an 8-lamp Fast Sequencial AA system. ### **Fast Sequential AA** Agilent's Fast Sequential mode of operation allows a Flame AA instrument to achieve the productivity and speed of sequential ICP-OES whilst also reducing running costs. The key advantages of Fast Sequential AA include: - Increased productivity, compared to conventional FAAS, allowing more samples to be measured per hour e.g. 10 elements can be measured in a sample in under 2 minutes, consuming less than 10 mL of sample - · Reduced gas consumption, resulting in lower running costs - Low sample volume consumption during analysis, resulting in less sample waste and reduced reagent and disposal costs - · Easy setup and fast method development The Agilent 240FS AA The Agilent 280FS AA ### **How Fast Sequential Mode Works** #### **Fast Sequential mode** Using Fast Sequential mode, samples are only aspirated once, with all elements being measured before the next sample is aspirated. #### **Conventional mode** Conventional AA determines only one element from each sample aspiration, so samples are analyzed time and time again during a multi-element sequence. Fast Sequential Mode operates in the following way: - The software sorts the elements by wavelength and flame type - 2. All lamps operate simultaneously, to minimize warm-up delays - 3. A motor-driven mirror provides fast lamp selection - 4. Reproducible wavelength positioning is achieved with minimal delays by the high speed wavelength drive (2,000 nm/min) operating under intelligent software control - The automatic gas control initiates instantaneous changes to programmed flows and provides superb reproducibility with optimum flame conditions for each element ## PROMT mode for even more productivity In addition to Fast Sequential mode, Agilent's Flame AA spectrometers feature a PRecision Optimized Measurement Time (PROMT) mode that allows the operator to set the level of precision (%RSD) they want for sample results, further accelerating analysis. This optimizes the sample read time, with high concentration elements requiring less read time than low concentration elements to achieve the same level of precision. #### PROMT mode offers: - Increased productivity, particularly for high concentration samples, compared to conventional Flame Atomic Absorption Spectrometry (FAAS), allowing more samples to be measured per hour - Reduced gas consumption, resulting in lower running costs - Further analysis time reduction when combined with Fast Sequential acquisition mode, with gas consumption and analysis time reduced by over 60%. ## **Extending capabilities and automating with accessories** Agilent provides an extensive range of accessories to extend the capabilities of your Flame Atomic Absorption systems. The range includes graphite tube atomizers, vapor generation and autosampler accessories, so you can meet analysis challenges with confidence. ### **Sample Introduction Pumping System** The SIPS accessory can prepare calibration standards from a single multi-element bulk standard, as well as automating sample dilutions and the addition of modifers. The SIPS 10 (single pump) and SIPS 20 (double pump) are designed to automate and speed up many tedious and error prone sample preparation tasks. A SIPS accessory, together with the 200 Series AA instrument software will: - Prepare calibration standards from a single multi-element bulk standard - Reduce sample preparation and the risk of operator error - · Automatically perform in-line dilutions - Minimize re-runs and extend the working range by automatically calculating and performing the dilution required to bring a sample into the calibrated range - Perform up to 200x dilutions with dilution errors of less than 2% - Simplify the sample preparation process with automatic addition of modifiers (SIPS 20 only), ensuring consistent matrix modification - Automate Internal Standard corrections (SIPS 20 only), which enhances accuracy and precision. One pump introduces the sample, while the second pump introduces the standard. The dual-pump SIPS 20 can perform dilutions and add modifer or standard additions by controlling the speeds of the two pumps. Slowing down the sample pump will draw less sample into the flow of diluent, effectively diluting the sample. The right hand pump can be turned on and off to control the addition of another liquid into the sample flow. ### **SPS 4 Autosampler** The SPS 4 autosampler is designed to meet the needs of high-throughput laboratories requiring a fast, high-capacity (up to 360 samples) and reliable autosampler. It is also small, quiet, easy-to-use and affordable. ### **Vapor Generation Accessory** The VGA 77 is a continuous flow vapor generation accessory for Atomic Absorption (AA) instruments that determines Hg and the hydride-forming elements at parts per billion (ppb) levels. ## **AA Supplies** Agilent offers a range of AA supplies that are manufactured to stringent specifications and rigorously tested to ensure the highest performance. The range includes: - · Nebulizers & glass impact beads - Tubing - 0-rings - Mixing paddles - · Spraychamber components - · Burners - · Accessory supplies #### Lamps The range includes single-element and solid cathode multi-element lamps and high intensity UltrAA lamps for superior, cost effective performance. Why risk compromising your analytical result with anything else? #### **Standards** Agilent offers a comprehensive range of inorganic, metallo-organic, and bio-diesel standards for AAS, ICP-0ES, ICP-MS, MP-AES and other atomic spectroscopy techniques. These standards can be used with Agilent and non-Agilent instruments and are available in different formats and concentrations, including: - Single element standards from 10 to 10,000 μg/mL - Multi-element standards - Wavelength calibration and instrument tuning solutions - Internal standards - lonization buffers and matrix modifiers - Environmental and pharmaceutical application specific standards - · Wear metal standards - Metallo-organic and bio-diesel standards All of Agilent's standards are manufactured in an ISO 9001 Guide 34 facility and certified in an ISO/IEC 17025 testing laboratory. Every inorganic standard is manufactured using high-purity raw materials, high-purity acids, and 18M Ohm de-ionized water, which are regularly tested in accordance with NIST guidelines. All Agilent spectroscopy Certifed Reference Materials (CRMs) are certified using the high performance spectroscopy protocols developed by the NIST to provide direct traceability to the NIST standards. All Agilent inorganic spectroscopy standards include a Certificate of Analysis (CoA) that details the certified concentration,
measurement uncertainty, and actual concentration values for up to 68 trace impurities (for ICP-OES/ICP-MS standards). In addition, the CoA details the method used for certification, intended use, instructions for proper use, and recommendations for appropriate conditions of storage. With Agilent standards, your laboratory can be assured of the quality, purity, and consistency in performance. Further information about Agilent's standards can be found at: www.agilent.com/chem/spectroscopystandards Information about the full range of consumables can be found at: www.agilent.com/chem/specsuppliesinfo # 2. STANDARD CONDITIONS #### General This primer is intended as a guide to analysts in the selection of techniques and instrument settings for practical flame spectroscopy. Although the techniques and settings quoted will give satisfactory results for the majority of determinations, it is impossible in the space of this primer to provide for all contingencies. Consequently, where analytical circumstances differ appreciably from those indicated in the primer, appropriate changes in operating conditions may be required. Throughout the primer, emphasis had been placed on practical applications and no attempt has been made to provide a complete theoretical background. Readers seeking a more thorough theoretical treatment of the subject are referred to the many text books currently available — see 'General References' at the end of this document. Also, while every effort has been made to ensure the validity of the published material in this primer, analysts should satisfy themselves that the written procedures and operating conditions, (and the results obtained from these) are valid. ## Recommended Instrument Parameters ### **Working Conditions (Fixed)** The conditions listed will provide optimum performance for dilute aqueous solutions. If chemical interference is known to be present then it may be necessary to use the hotter nitrous oxide acetylene flame in order to eliminate interferences and obtain optimum conditions for precision and accuracy. With some elements, the flame stoichiometry can greatly affect the analytical signal. It is therefore desirable to examine the effect of flame conditions (or stoichiometry) on the signal. An oxidizing flame is one with low acetylene content, while a reducing flame has a relatively high acetylene content. Reducing flames become luminous due to the excess amount of carbon. ### Working Conditions (Variable) The upper limit of the working range concentration will give about 0.8 to 1.0 absorbance. The lower limit of the working range is about 10 times the defined detection limit. This range may be altered by burner rotation in order to avoid dilutions. The alternative wavelengths shown have been selected to give a variety of working ranges. In some cases other analytical lines are available. However, the sensitivities are no better than the listed lines and the latter have been preferred because of the relatively better signal strength and spectral purity. The slit width indicates the spectral band width expressed in nanometers. ## Ag (Silver) A.W. 107.9 ## **Recommended Instrument Parameters Atomic Absorption** #### Working Conditions (Fixed) Lamp current 4 mA Fuel acetylene Support air Flame stoichiometry oxidizing #### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 328.1 | 0.5 | 0.02-10 | | 338.3 | 0.5 | 0.06-20 | #### **Flame Emission** Wavelength 328.1 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide #### Interferences No chemical interferences have been observed in air-acetylene flames. ### AI (Aluminium) A.W. 26.98 ## **Recommended Instrument Parameters Atomic Absorption** #### Working Conditions (Fixed) Lamp current 10 mA Fuel acetylene Support nitrous oxide Flame stoichiometry reducing; red cone 1–2 cm high #### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 309.3 | 0.5 | 0.3-250 | | 396.1 | 0.5 | 0.5–250 | | 237.3 | 0.5 | 2-800 | | 236.7 | 0.5 | 3–1000 | | 257.4 | 0.5 | 5–1600 | | 256.8 | 0.5 | 8–2600 | #### Flame Emission Wavelength 396.1 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide Flame stoichiometry reducing; red cone 1–2 cm high (Note 1) Burner height 5–8 mm (Note 1) Note 1: Adjust for optimum performance. Aluminium emission appears in the center of a strongly emitting CN band in the flame. Major factors in the determination at low levels of detection are the adjustment of fuel-support ratio and burner height. The use of flame emission is only recommended for very low concentrations of aluminium in solutions of simple aqueous matrix. #### Interferences Aluminium is partially ionized in the nitrous oxide-acetylene flame. To suppress ionization, add potassium nitrate or chloride to give final concentration of 2000 $\mu g/mL$ potassium. The addition of a readily ionizable element such as potassium overcomes enhancement interference from other alkali metals. Enhancement also occurs with the following elements: | Aluminium solution 100 µg/mL | | | |------------------------------|--------------------------------|--------------| | Element | Concentration Range
(µg/mL) | %Enhancement | | Со | 50-5000 | 3–5 | | Fe | 50-5000 | 4–15 | | Mn | 50-5000 | 4–11 | | Ni | 50-5000 | *-26 | | Ti | 50-5000 | 8–14 | ^{* -2%} at 50 µg/mL These interferences are dependent on flame conditions and burner height(1). A fuel rich flame (red cone 1.5–2 cm) decreases the effect. Silicon depresses aluminium absorbance by the formation of an undissociated refractory complex(2, 3). Addition of lanthanum can minimize the effect of silicon, calcium and phosphate on aluminium. Interference effects can be minimized by matching the sample and standard solutions with respect to the major matrix elements in the sample. #### References - 1. Marks, J.Y.and Welcher, G.G., Anal. Chem., 42, (9), 1033 (1970). - 2. Ramakrishna, T.V., et al., Anal. Chim. Acta., 39, 81 (1967). - 3. Ferris, A.P., et al., Analyst, 95, 574 (1970). ### As (Arsenic) A.W. 74.92 ## Recommended Instrument Parameters Atomic Absorption #### Working Conditions (Fixed) Lamp current 10 mA Fuel acetylene Support nitrous oxide Flame stoichiometry reducing; red cone 1–2 cm high #### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|--|----------------------------------| | 193.7 | 0.5 | 3–150 | | 197.2 | 1.0 | 6–300 | | 189.0 | 1.0 | 10–350 | | NOTE | The 189.0 nm wavelength is normally used only with an evacuated system because of atmostpheric absorption. | | #### **Vapor Generation Method** At low concentrations, this element is best determined by the vapor generation technique. Details of the appropriate procedures are given in the operation manual supplied with the Agilent vapor generation accessory. See also Reference 6. #### Flame Emission Arsenic is not generally determined by flame emission because of the poor emission characteristics of the element. #### Interferences #### **Spectral Interference** One of the main sources of interference in the determination of arsenic is the molecular absorption of flame gases and solution species at the extreme ultraviolet region of the spectrum where the most sensitive lines for arsenic occur (193.7 nm and 197.2 nm). This non-atomic absorption can be corrected by means of a continuum light source such as a deuterium lamp. #### References - Smith, K.E. and Frank, C.W., Appl. Spectr., 22, (6), 765 (1968). - 2. Hwang, J.Y. and Sandonato, L.M., Anal. Chem., 42, (7), 744 (1970). - 3. Kirkbright, G.F. and Ranson, L., Anal. Chem., 43, (10), 1238 (1971). - 4. Brodie, K.G., Amer. Lab., 9, 73 (1977). - 5. Brodie, K.G., Amer. Lab., 11, 58 (1979). - 6. Agilent Instruments At Work, No. AA-38. ### Au (Gold) A.W. 197.0 ## **Recommended Instrument Parameters Atomic Absorption** #### Working Conditions (Fixed) Lamp current 4 mA Fuel acetylene Support air Flame stoichiometry oxidizing #### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 242.8 | 1.0 | 0.1–30 | | 267.6 | 1.0 | 0.2–60 | #### **Flame Emission** Wavelength 267.6 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide #### Interferences Few interferences have been noted in air-acetylene flames. However, large excesses of iron, copper and calcium have been found to suppress the result(1) where gold is extracted into MIBK. Solvent extraction techniques have been developed(2), which remove any interfering element. Large quantities of noble metals such as platinum and palladium interfere with gold analysis. A 1% uranium solution has been used as a releasing agent for this interference. The nitrous oxide-acetylene flame will remove any interference but provides a lower sensitivity. - 1. Hildon, M.A. and Sully, G.R., Anal. Chim. Acta., 54, 245–251 (1971). - 2. Zlathuis, A., Bruening, W. and Bayer, E., Anal. Chem., 41, 12, 1693 (1969). ### B (Boron) A.W. 10.81 ## **Recommended Instrument Parameters Atomic Absorption** #### Working Conditions (Fixed) Lamp current 20 mA Fuel acetylene Support nitrous oxide Flame stoichiometry reducing; red cone (Note 1) 2-2.5 cm high Note 1: Carefully adjust flame stoichiometry and burner position for optimum sensitivity. #### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 249.7
249.8 | 0.2 | 5–2000 | | 208.9 | 0.2 | 15–4000 | #### Flame Emission
Wavelength 249.7 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide Generally a flame having a red cone 1 cm high with at the burner 1–2 mm below the light path will be found to be nearly optimum. Boron is not usually determined by flame emission because of the poor emission characteristics of the element. #### Interferences Sodium has been found to cause interference when the ratio of sodium to boron is very high. The effect is usually minimized by adjusting the flame to neutral stoichiometry (red cone 0.5–1 cm high) with consequent loss of sensitivity. ### Ba (Barium) A.W. 137.3 ## Recommended Instrument Parameters Atomic Absorption #### Working Conditions (Fixed) Lamp current 20 mA Fuel acetylene Support nitrous oxide Flame stoichiometry reducing; red cone 2-3 cm high #### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 553.6 | 0.5 | 0.2–50 | | 350.1 | 0.5 | 120–24000 | #### **Flame Emission** Wavelength 553.6 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide Severe spectral interference will be observed when measuring barium in the presence of calcium due to a strong CaOH band occurring around the same wavelength. #### Interferences Barium is partially ionized in the nitrous oxide-acetylene flame. To suppress ionization, add potassium nitrate or chloride solution to give final concentration of 2000 $\mu g/mL$ potassium in all solutions including the blank. The strong emission from barium falling on the photomultiplier may result in a considerable increase in shot noise evidenced by increasingly noisy signals as the concentration of barium increases. Barium absorbance in an air-acetylene flame is severely depressed by phosphate, silicon and aluminium. This is overcome by the use of a nitrous oxide-acetylene flame. ## Be (Beryllium) A.W. 9.012 ## **Recommended Instrument Parameters Atomic Absorption** #### Working Conditions (Fixed) Lamp current 5 mA Fuel acetylene Support nitrous oxide Flame stoichiometry reducing; red cone 1–2 cm #### Working Conditions (Variable) Wavelength (nm) 234.9 Slit width (nm) 1.0 Optimum working range 0.01–4 (µg/mL) #### Flame Emission Wavelength 234.9 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide #### Interferences Sodium and silicon at levels in excess of 1000 μ g/mL have been found to severely depress beryllium absorbance. Aluminium has been reported (1,2) to suppress the absorbance by 25%. This was overcome by the presence of 1.5 g/L of fluoride. #### References - Ramakrishna, T.V., West, P.W. and Robinson, J.W., Anal. Chim. Acta., 39, 81–87 (1967). - Fleet, B., Liberty, K.V. and West, T.S., Talanta, 17, 203–210 (1970). ### Bi (Bismuth) A.W. 209.00 ## Recommended Instrument Parameters Atomic Absorption #### Working Conditions (Fixed) Lamp current (Note 1) 10 mA Fuel acetylene Support air Flame stoichiometry oxidizing Note 1: Absorbance is relatively independent of lamp current. #### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 223.1 | 0.2 | 0.5–50 | | 222.8 | 0.2 | 2–160 | | 227.7 | 0.5 | 20–1200 | | 306.8 | 0.5 | 2–160 | The use of a slightly more oxidizing flame and increased lamp current will improve signal stability. #### Flame Emission Wavelength 223.1 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide The use of flame emission for bismuth is not recommended because of the poor emission characteristics of the element. #### Interferences No chemical interference at levels up to $10000 \, \mu g/mL$ interferent has been reported for the determination of bismuth with an air-acetylene flame. #### Vapor Generation Method At low concentrations, this element is best determined by the vapor generation technique. Details of the appropriate procedures are given in the operation manual supplied with the Agilent vapor generation accessory and Reference 3. #### References - 1. Brodie, K.G., Amer. Lab., 9, 73 (1977). - 2. Brodie, K.G., Amer. Lab., 11, 58 (1979). - 3. Agilent Instruments At Work, No. AA-38. ### Ca (Calcium) ## **Recommended Instrument Parameters Atomic Absorption** #### Working Conditions (Fixed) Lamp current 10 mA Fuel acetylene Support nitrous oxide Flame stoichiometry reducing; red cone 1-1.5 cm high #### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 422.7 | 0.5 | 0.01-3 | | 239.9 | 0.2 | 2–800 | #### Flame Emission Wavelength 422.7 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide Maximum intensity is obtained with an oxidizing nitrous oxide-acetylene flame (red cone 1 mm high). #### Interferences Chemical interferences in the air-acetylene flame are pronounced and have been fairly well documented[1,2,3,4]. These interferences, which depress the calcium absorbance, can be eliminated by the introduction of a releasing agent such as strontium (5000 $\mu g/mL$) or lanthanum (10000 $\mu g/mL$). Normally the addition of a releasing agent is used in conjunction with the practice of matching sample and standard solutions to obviate combined interference effects. The presence of excess sodium or potassium causes 5–10% signal enhancement due to suppression of ionization. In the nitrous oxide-acetylene flame the main interference is caused by ionization of calcium itself. This is overcome by the addition of a more readily ionisable element such as potassium (2000–5000 $\mu g/mL).$ #### References - 1. Adams, P.B. and Passmore, W.O., Anal. Chem., 38, (4), 630 (1966). - 2. Ramakrishna, T.V., et al., Anal. Chim. Acta., 40, 347 (1968). - 3. Hwang, J.Y., and Sandonato, L., Anal. Chim. Acta., 48, 188 (1969). - Sastri, V.S., Chakrabarti, C.L. and Willis, D.E., Talanta, 16, 1093 (1969). ### Cd (Cadmium) A.W. 112.4 ## **Recommended Instrument Parameters Atomic Absorption** #### Working Conditions (Fixed) Lamp current (Note 1) 4 mA Fuel (Note 2) acetylene Support air Flame stoichiometry oxidizing Note 1: Absorbance strongly dependent on lamp current. Note 2: Absorbance strongly dependent on flame stoichiometry. Adjust the fuel flow carefully for maximum sensitivity. #### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 228.8 | 0.5 | 0.02-3 | | 326.1 | 0.5 | 20-1000 | #### Flame Emission Wavelength 326.1 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide Cadmium is not usually determined by flame emission because of the poor emission characteristics of the element. #### Interferences No major chemical interference has been reported in the air-acetylene flame. ## Co (Cobalt) A.W. 58.93 ## **Recommended Instrument Parameters Atomic Absorption** #### Working Conditions (Fixed) Lamp current 7 mA Fuel acetylene Support air Flame stoichiometry oxidizing #### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 240.7 | 0.2 | 0.05–15 | | 304.4 | 0.5 | 1–200 | | 346.6 | 0.2 | 2–500 | | 347.4 | 0.2 | 4–1000 | | 391.0 | 0.2 | 150-30000 | #### Flame Emission Wavelength 345.4 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide #### Interferences Few interferences have been observed for cobalt in an air-acetylene flame. It has been reported that nickel levels in excess of 1500 µg/mL cause severe depression of about 50%. This interference can be avoided by diluting solutions to less than 1500 $\mu g/mL$ Ni and using the nitrous oxide-acetylene flame. #### References 1. Ginzberg, V.L. and Satarina, G.I., Zhv Anal. Chem., 21, 5, 593 (1966). ### Cr (Chromium) A.W. 52.00 ## **Recommended Instrument Parameters Atomic Absorption** #### Working Conditions (Fixed) Lamp current 7 mA Fuel acetylene Support air Flame stoichiometry reducing #### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 357.9 | 0.2 | 0.06-15 | | 425.4 | 0.2 | 0.4-40 | | 428.9 | 0.5 | 1–100 | | 520.8 | 0.2 | 20–2600 | | 520.4 | 0.2 | 50-6000 | #### Flame Emission Wavelength 425.4 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide #### Interferences Cobalt, iron and nickel (particularly in the presence of perchloric acid) have been found to cause depression of chromium absorbance. This can be overcome by the use of an oxidizing air-acetylene flame or preferably a nitrous oxide-acetylene flame. No ionization suppressant is necessary. Several authors[1, 2, 3] have found interference in air-acetylene flame from copper, barium, aluminium, magnesium and calcium. The extent of interference is strongly dependent on the flame stoichiometry. Optimization of the stoichiometry or the use of the nitrous oxide-acetylene flame can eliminate the interference. #### References - Yanagisawa, M., Suzuhri, M. and Takreuchi, T., Anal. Chim. Acta., 52, 386–389 (1970). - 2. Wilson, L., Anal. Chim. Acta., 40, 503-512 (1968). - 3. Taylor, R.W., American Laboratory, November, 33–35 (1970). ## Cs (Cesium) A.W. 132.9 ## **Recommended Instrument Parameters Atomic Absorption** #### Working Conditions (Fixed) Lamp current 20 mA Fuel acetylene Support air Flame stoichiometry oxidizing #### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 852.1 | 1.0 | 0.04–5 | | 894.5 | 1.0 | 0.06-24 | | 455.5 | 0.5 | 4–1200 | | 459.3 | 0.2 | 15-4000 | #### **Flame Emission** Wavelength 852.1 nm Slit width 0.1 nm Fuel acetylene Support air To remove the possibility of second order spectral interference, it is recommended that a
filter be used to cut off wavelengths below 600 nm. #### Interferences Cesium is partially ionized in the air acetylene flame. To suppress ionization, add potassium nitrate or chloride solution to give a final concentration of 2000 $\mu g/mL$ potassium in all solutions including the blank. ## Cu (Copper) A.W. 63.54 ## Recommended Instrument Parameters Atomic Absorption #### Working Conditions (Fixed) Lamp current 4 mA Fuel acetylene Support air Flame stoichiometry oxidizing #### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 324.7 | 0.5 | 0.03-10 | | 327.4 | 0.2 | 0.1–24 | | 217.9 | 0.2 | 0.2–60 | | 218.2 | 0.2 | 0.3-80 | | 222.6 | 0.2 | 1–280 | | 249.2 | 0.5 | 4–800 | | 244.2 | 1.0 | 10–2000 | #### Flame Emission Wavelength 327.4 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide #### Interferences No interferences have been reported for copper in the air-acetylene flame, but some depression has been noted at high Zn/Cu ratios. This can be minimized by the use of a lean air-acetylene flame or a nitrous oxide-acetylene flame. ### Dy (Dysprosium) A.W. 162.5 ## **Recommended Instrument Parameters Atomic Absorption** Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 421.2 | 0.2 | 0.3–150 | | 419.5 | 0.2 | 1–260 | | 419.2 | 0.2 | 5–2800 | | 422.5 | 0.2 | 10-4000 | | 421.8 | 0.2 | 15–10000 | #### Flame Emission Wavelength 526.5 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide Below 10 μ g/mL, determination by flame emission is preferred, although the wavelength required must be accurately isolated to avoid spectral interference from the other rare earth elements. At higher concentrations, atomic absorption is normally used. #### Interferences Hydrofluoric acid, aluminium and silicon have been found to depress the absorbance by 90%. The interference is increased by the presence of sodium. Interferences of this type can usually be overcome by the precipitation of the rare earth oxide and subsequent dissolution in dilute hydrochloric acid. Dysprosium is partially ionized in the nitrous oxide-acetylene flame. To suppress ionization, add potassium nitrate or chloride solution to give a final concentration of 4000 $\mu g/mL$ potassium in all solutions including the blank. #### References Kinnunen, O and Lindsjo, O, Chemist-Analyst, 56, 76–78 (1967). ### Er (Erbium) A.W. 167.3 ## **Recommended Instrument Parameters Atomic Absorption** Working Conditions (Fixed) Lamp current 10 mA Fuel acetylene Support nitrous oxide Flame stoichiometry reducing; red cone 1–2 cm high #### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (μg/mL) | |-----------------|-----------------|----------------------------------| | 400.8 | 0.5 | 0.5–150 | | 389.3 | 0.5 | 2–560 | | 402.1 | 0.2 | 5–1000 | | 408.8 | 0.2 | 18-4000 | #### **Flame Emission** Wavelength 400.8 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide Below 10 μ g/mL, determination by flame emission is preferred, although the wavelength required must be accurately isolated to avoid spectral interference from other rare earth elements. At higher concentrations, atomic absorption is normally used. #### Interferences As in the case of other rare earth elements, severe interference is observed in the presence of hydrofluoric acid, aluminium and silicon, particularly when measured in the presence of sodium. Erbium is partially ionized in the nitrous oxide-acetylene flame. To suppress ionization, add potassium nitrate or chloride solution to give a final concentration of 4000 $\mu g/mL$ potassium in all solutions including the blank. #### References Kinnunen, J. and Lindsjo, O., Chemist-Analyst, 56, 76–78 (1967). ### **Eu (Europium)** A.W. 152.0 ## **Recommended Instrument Parameters Atomic Absorption** Working Conditions (Fixed) Lamp current 10 mA Fuel acetylene Support nitrous oxide Flame stoichiometry reducing; red cone 1–2 cm Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 459.4 | 1.0 | 15–60 | | 333.4 | 0.5 | 5000-20000 | #### Flame Emission Wavelength 459.4 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide Below 10 µg/mL, determination by flame emission is preferred, although the wavelength required must be accurately isolated to avoid spectral interference from other rare earth elements. At higher concentrations, atomic absorption is normally used. #### Interferences As in the case of other rare earth elements, severe interference is observed in the presence of hydrofluoric acid, silicon and aluminium when measured in the presence of sodium. Interference may be minimized by the precipitation of the rare earth oxide and subsequent dissolution in hydrochloric acid. Europium is partially ionized in the nitrous oxide-acetylene flame. To suppress ionization, add potassium nitrate or chloride solution to give a final concentration of 4000 µg/mL potassium in all solutions including the blank. #### References 1. Kinnunen, J. and Lindsjo, O., Chemist-Analyst, 56, 25–27, (1967). ### Fe (Iron) A.W. 55.85 ## **Recommended Instrument Parameters Atomic Absorption** #### Working Conditions (Fixed) Lamp current 5 mA Fuel acetylene Support air Flame stoichiometry oxidizing #### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 248.3 | 0.2 | 0.06–15 | | 372.0 | 0.2 | 1–100 | | 386.0 | 0.2 | 1.5–200 | | 392.0 | 0.2 | 20–3200 | #### **Flame Emission** Wavelength 372.0 nm Slit width 0.1 nm Fuel acetylene Support air #### Interferences Interference from citric acid has been reported(1) to suppress the absorbance by up to 50% for a citric acid level of 200 $\mu g/$ mL. The effect is not overcome by adjustment of flame stoichiometry.The interference has been minimized by measuring the absorbance in the presence of phosphoric acid. It is necessary to select an optimum burner height to gain maximum freedom from interference. There is also some evidence that high sulfate con centrations have a slightly depressive effect on iron determination. The use of a nitrous oxide-acetylene flame has been found to remove all interference. #### References - 1. Roos, J.T.H. and Price, W.J., Spectrochimica Acta., 26B, 279–284 (1971). - 2. Van Loon, J.C. and Parissis, C.M., Analyst, 94, 1057–1062 (1969). ### Ga (Gallium) A.W. 69.72 ## **Recommended Instrument Parameters Atomic Absorption** #### Working Conditions (Fixed) Lamp current (Note 1) 4 mA Fuel acetylene Support air Flame stoichiometry oxidizing Note 1: Absorbance is highly dependent on lamp current. #### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 294.4 | 0.5 | 1–200 | | 287.4 | 0.5 | 2–240 | | 272.0 | 0.5 | 30-5200 | #### Flame Emission Wavelength 403.3 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide #### Interferences Interferences have not been reported for atomic absorption measurements using the air-acetylene flame. Any interferences may be readily overcome by using the nitrous oxide-acetylene flame with little loss in sensitivity. Gallium is partially ionized in the nitrous oxide-acetylene flame. To suppress ionization, add potassium nitrate or chloride solution to give a final concentration of 2000 µg/mL potassium in all solutions including the blank. For emission measurements, manganese causes spectral interference by emitting at 403.3 nm. This can be overcome by using the 417.2 nm line and establishing the baseline by scanning. ### **Gd** (Gadolinium) A.W. 157.25 ## **Recommended Instrument Parameters Atomic Absorption** #### Working Conditions (Fixed) Lamp current 20 mA Fuel acetylene Support nitrous oxide Flame stoichiometry reducing; red cone 1–2 cm high | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 368.4 | 0.2 | 20-6000 | | 405.8 | 0.2 | 35–8000 | | 419.1 | 0.2 | 90-16000 | #### **Flame Emission** Wavelength 461.7 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide Below 500 μ g/mL, determination by flame emission is preferred, although the wavelength required must be accurately isolated to avoid spectral interference from the other rare earth elements. At higher concentrations, atomic absorption is normally used. #### Interferences Gadolinium is partially ionized in the nitrous oxide-acetylene flame. To suppress ionization, add potassium nitrate or chloride solution to give a final concentration of 2000 $\mu g/mL$ potassium in all solutions including the blank. Hydrofluoric acid, iron, aluminium and silicon each severely depress gadolinium absorbance when present at concentrations in excess of $500 \mu g/mL$. ## Ge (Germanium) A.W. 72.59 ## **Recommended Instrument Parameters Atomic Absorption** #### Working Conditions (Fixed) Lamp current (Note 1) 5 mA Fuel acetylene Support nitrous oxide Flame stoichiometry reducing; red cone (Note 2) 1-2 cm high Note 1: Absorbance is slightly dependent on lamp current. Note 2: Adjust carefully for optimum sensitivity by varying fuel flow. #### **Working Conditions (Variable)** | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 265.1
265.2 | 1.0 | 2–300 | | 271.0 | 0.5 | 5–600 | | 269.1 | 0.5 | 10–1400 | | 303.9 | 0.5 | 40-4200 | #### Flame Emission Wavelength 265.1 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide #### Interferences No chemical interferences have been
reported. ### **Hf (Hafnium)** A.W. 178.5 ## **Recommended Instrument Parameters Atomic Absorption** #### Working Conditions (Fixed) Lamp current 10 mA Fuel acetylene Support nitrous oxide Flame stoichiometry reducing; red cone 1–2 cm high #### Working Conditions (Variable) | | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |---|-----------------|-----------------|----------------------------------| | | 307.3 | 0.2 | 20–3000 | | ľ | 368.2 | 0.5 | 140–11000 | | ľ | 377.8 | 0.5 | 250-20000 | #### Flame Emission Wavelength 368.2 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide Hafnium is usually determined by atomic absorption. #### Interferences Hafnium absorbance has been found to be suppressed by sulfuric acid, hydrofluoric acid, alkali metals and alkaline earth metals. Most transition group metals interfere. In many cases the interferents affect the absorbance when present in concentrations as small as $50~\mu g/mL$, with hafnium at $100~\mu g/mL$. The use of an oxidizing nitrous oxide-acetylene flame can minimize most of these effects. However, the development of analytical techniques where the interferent is usually present at minimal concentrations is recommended. Matrices of sample and standard solutions must be carefully matched. ### **Hg (Mercury)** A.W. 200.59 ## Recommended Instrument Parameters Atomic Absorption #### Working Conditions (Fixed) Lamp current 4 mA Fuel acetylene Support air Flame stoichiometry oxidizing #### Working Conditions (Variable) Wavelength (nm) 253.7 Slit width (nm) 0.5 Optimum working range 2-400 (µg/mL) #### **Vapor Generation Method** At low concentrations, this element can determined by the vapor generation technique. Details of the appropriate procedures are given in the operation manual supplied with the Agilent vapor generation accessory. Refer also to Reference 5. #### Flame Emission Wavelength 253.7 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide Mercury is not usually determined by flame emission. #### Interferences Mercury (I) and mercury (II) show different sensitivities in the air-acetylene flame. Mercury (I) is more sensitive due to the disproportionation reaction. $$Hg_2^{2+} \rightarrow Hg^{2+} + Hg^0$$ Elemental mercury is readily atomized with 100% efficiency. The 'cold vapor technique' can be used for trace determinations of mercury(1,5). Metallic ions which are reduced to the elemental state by stannous chloride can interfere with the cold vapor method. They can amalgamate or form stable compounds with mercury[2,3]. With both flame and cold vapor techniques, it is advisable to check for the absence of non-atomic absorption. #### References - 1. Poluektov, N.S., and Vitkun, R.A., Zhur. Anal. Chim., 18, (1), 37 (1963). - 2. Poluektov, N.S., Vitkun, R.A. and Zelukova, Y.V., ibid., 19, (8), 937 (1964). - 3. Brodie, K.G., Amer. Lab., 9, 73 (1977). - 4. Brodie, K.G., Amer. Lab., 11, 58 (1979). - 5. Agilent Instruments At Work, No. AA-38. ### Ho (Holmium) A.W. 164.9 ## **Recommended Instrument Parameters Atomic Absorption** Working Conditions (Fixed) Lamp current 20 mA Fuel acetylene Support nitrous oxide Flame stoichiometry reducing; red cone 1–2 cm high #### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 410.4 | 0.2 | 0.4-200 | | 412.7 | 0.2 | 4–2000 | | 425.4 | 0.5 | 30–12000 | #### Flame Emission Wavelength 559.0 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide Below 25 μ g/mL, determination by flame emission is preferred, although the wavelength required must be accurately isolated to avoid spectral interference from the other rare earth elements. At higher concentrations, atomic absorption is normally used. #### **Interferences** Holmium is partially ionized in the nitrous oxide-acetylene flame. To suppress ionization, add potassium nitrate or chloride solution to give a final concentration of 2000 µg/mL potassium in all solutions including the blank. Holmium absorbance has been found to be suppressed by hydrofluoric acid, aluminium and silicon. ### In (Indium) A.W. 114.8 ## **Recommended Instrument Parameters Atomic Absorption** #### Working Conditions (Fixed) Lamp current 5 mA Fuel (Note 1) acetylene Support air Flame stoichiometry oxidizing Note 1: Fuel flow must be adjusted carefully for optimum sensitivity and detection limit conditions. #### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 303.9 | 0.5 | 0.4–40 | | 271.0 | 0.2 | 12–1600 | #### Flame Emission Wavelength 451.1 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide Flame stoichiometry oxidizing: red cone 0.5 cm high #### Interferences Indium is substantially ionized in the nitrous oxide-acetylene flame. To suppress ionization, add potassium nitrate or chloride solution to give a final concentration of 2000 $\mu g/mL$ potassium in all solutions including the blank. Elements such as aluminium, silicon, iron, tin and zinc produce small interferences in the nitrous oxide-acetylene flame. These are best overcome by carefully matching the matrix of standards and sample solutions. ### Ir (Iridium) A.W. 192.2 ## Recommended Instrument Parameters Atomic Absorption #### Working Conditions (Fixed) Lamp current 10 mA Fuel (Note 1) acetylene Support air Flame stoichiometry reducing; slightly luminous Note 1: Absorbance is highly dependent on the flame stoichiometry and the acetylene flow rate must be carefully optimized. #### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 208.9 | 0.2 | 5–200 | | 264.0 | 0.2 | 12–480 | | 266.5 | 0.2 | 15–560 | | 254.4 | 0.2 | 20–720 | #### Flame Emission Wavelength 380.0 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide Iridium is usually determined by atomic absorption. #### Interferences Chemical interference in the air-acetylene flame is extremely diverse[1]. In simple solutions, the effect of a particular element is markedly dependent on the concentration ratio of iridium to interferent. In general, aluminium, copper, lead, platinum, sodium and potassium enhance the absorbance by over 50%; titanium, tin, nickel, iron and palladium tend to depress the signal by amounts greater than 30%. The interference pattern in the complex matrix of ores, minerals etc. is extremely difficult to categorize. Fortunately, an empirical means of overcoming the major interference effects has been reported[2]. Although (in common with many releasing agents) the chemistry of the reaction has not been investigated, it has been found that a copper-sodium mixture (7000 $\mu g/mL$ Cu; 3000 $\mu g/mL$ Na) is very effective in counteracting the interferences. The mixture is prepared from the sulfate salts of the respective elements. Copper nitrate, at a much higher level (20000 $\mu g/mL$ Cu) has also been used to overcome these interferences[3]. #### References - 1. Van Loon, J.C., Atomic Abs. Newsletter, 8, (1), 6 (1969). - 2. Grimaldi, F.S. and Schnepfe, M.M., Talanta, 17, 617, (1970). - 3. Houze, A.A.G., Journal South African Chem. Inst., 23, 115, (1970). ## K (Potassium) A.W. 39.10 ## **Recommended Instrument Parameters Atomic Absorption** #### Working Conditions (Fixed) Lamp current 5 mA Fuel (Note 1) acetylene Support air Flame stoichiometry oxidizing Note 1: An air-acetylene flame is normally used because interferences are reduced and the signal/noise ratio is improved. #### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 766.5 | 1.0 | 0.03-2.0 | | 769.9 | 1.0 | 0.1-6.0 | | 404.4 | 0.5 | 15–800 | #### Flame Emission Wavelength 766.5 nm Slit width 0.1 nm Fuel acetylene Support air The flame emission determination of potassium is limited by flame stability and by 'pick up' of potassium from the air and storage vessels. Air-acetylene can be used if an ionization suppressant is added. #### Interferences Potassium is partially ionized in the air-acetylene flame. To suppress ionization, add cesium nitrate or chloride solution to give a final concentration of 1000 µg/mL cesium in all solutions including the blank. The purest available cesium compound must be used to avoid potassium contamination. ## La (Lanthanum) A.W. 138.9 ## **Recommended Instrument Parameters Atomic Absorption** #### Working Conditions (Fixed) Lamp current 20 mA Fuel acetylene Support nitrous oxide Flame stoichiometry reducing; red cone 1.5–2 cm #### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 550.1 | 0.2 | 20–10000 | | 403.7 | 0.5 | 50-24000 | | 357.4 | 0.5 | 120-52000 | #### Flame Emission Wavelength 441.7 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide The flame emission signal for lanthanum is quite intense. Determination by flame emission is therefore preferred, although the wavelength required must be accurately isolated to avoid spectral interference from the other rare earth elements. #### Interferences Lanthanum is partially ionized in the nitrous oxide-acetylene flame. To suppress ionization, add potassium nitrate or chloride solution to give a final concentration of 5000 $\mu g/mL$ potassium in all solutions including the blank. Both absorption and emission signals for lanthanum are depressed in the presence of phosphates, fluorides, silicon, aluminium and iron, and by other rare earths. Many solvent extraction procedures can be found in the literature; one simple method is extraction at pH 7 with 0.1 M cinnamic acid in hexane. Otherwise rigorous matching of sample and standard solutions is
necessary to control interferences. No chemical releasing agent has been discovered. ### Li (Lithium) A.W. 6.939 ## **Recommended Instrument Parameters Atomic Absorption** #### Working Conditions (Fixed) Lamp current 5 mA Fuel acetylene Support air Flame stoichiometry oxidizing #### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 670.8 | 1.0 | 0.02-5 | | 323.3 | 0.2 | 10–2000 | | 610.4 | 0.5 | 200–32000 | At 670.8 nm it is advisable to use a sharp cutoff filter to avoid second-order interference from the neon 335.5 nm line emitted by the lamp. #### Flame Emission Wavelength 670.8 nm Slit width 0.1 nm Fuel acetylene Support air #### Interferences In the air-acetylene flame, ionization is appreciable and it is necessary to match all solutions with respect to easily ionized elements such as Na, K, Rb, Cs, Ca, Sr and Ba. Ionization is suppressed if all solutions are made to contain 2000 $\mu g/mL$ potassium. No chemical interferences are known. ### Lu (Lutetium) A.W. 175.0 ## **Recommended Instrument Parameters Atomic Absorption** #### Working Conditions (Fixed) Lamp current 10 mA Fuel acetylene Support nitrous oxide Flame stoichiometry reducing; red cone 1–2 cm #### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 336.0 | 1.0 | 3–2000 | | 356.8 | 0.5 | 5-2400 | | 331.2 | 0.5 | 7–3200 | | 337.7 | 0.5 | 8–3600 | #### **Flame Emission** Wavelength 466.2 nm or 451.9 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide Note that the emission at 466.2 nm arises from the LuO band emission, while at 451.9 nm the emission is a line due to Lu atoms. The flame emission signal for lutetium is quite intense. Below 400 μ g/mL, determination by flame emission is preferred, although the wavelength required must be accurately isolated to avoid spectral interference from the other rare earth elements. At higher concentrations, atomic absorption is normally used. #### Interferences Lutetium is partially ionized in the nitrous oxide-acetylene flame. To suppress ionization, add potassium nitrate or chloride solution to give a final concentration of 2000 $\mu g/mL$ potassium in all solutions including the blank. Absorbance and emission signals are depressed in the presence of phosphates, fluorides, silicon, aluminium and iron, and the other rare earth elements. Non-specific solvent extraction methods are available to circumvent some of these interferences. No chemical releasing agents are known. #### References Rains, T.C., House, H.P. and Menis, O., Anal. Chim. Acta., 22, 315 (1960). ## Mg (Magnesium) A.W. 24.31 ## **Recommended Instrument Parameters Atomic Absorption** #### Working Conditions (Fixed) Lamp current 4 mA Fuel acetylene Support air Flame stoichiometry oxidizing #### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working Range
(μg/mL) | |-----------------|--|----------------------------------| | 285.2 | 0.5 | 0.003-1 | | 202.6 | 1.0 | 0.15–20 | | NOTE | Sensitivity is strongly dependent on lamp current. | | #### Flame Emission Wavelength 285.2 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide #### Interferences The most common interferences in air-acetylene can be overcome by the addition of a known excess of a releasing agent such as strontium (1000–5000 $\mu g/mL)$ or lanthanum (10000 $\mu g/mL)$. Solutions containing 200 $\mu g/mL$ interferent in 0.4 $\mu g/mL$ Mg show the following interference pattern: | Mg Absorbance | | Mg Absorbance | | |---------------|------|---------------|------| | Al | -24% | SiO3 | -42% | | Li | +10% | CO3 | -17% | | Ti | -16% | SeO3 | -14% | | Zr | -9% | | | The nitrous oxide-acetylene flame shows no interference except a general absorbance enhancement of 15% by the alkali metals due to suppression of ionization. - 1. Halls, D.J. and Townshend, A., Anal. Chim. Acta., 38, 278 (1966). - 2. Firman, R.J., Spectrochim. Acta., 21, 341 (1965). - 3. Ramakrishna, T.V., West, P.W. and Robinson, J.W., Anal. Chim. Acta., 40, 347, (1968). ### Mn (Manganese) A.W. 54.94 ## **Recommended Instrument Parameters Atomic Absorption** #### Working Conditions (Fixed) Lamp current 5 mA Fuel acetylene Support air Flame stoichiometry oxidizing A nitrous oxide-acetylene flame can also be used but sensitivity is poorer. #### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 279.5 | 0.2 | 0.02-5 | | 403.1 | 0.2 | 0.5–60 | | 321.7 | 0.2 | 100-14000 | #### Flame Emission Wavelength 403.1 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide #### Interferences In a reducing air-acetylene flame the absorbance is depressed in the presence of phosphate, perchlorate, iron, nickel, silicon and cobalt. In an oxidizing air-acetylene flame or a nitrous oxide-acetylene flame these interferences do not arise. No releasing agent is usually necessary. ### Mo (Molybdenum) A.W. 95.94 ## **Recommended Instrument Parameters Atomic Absorption** #### Working Conditions (Fixed) Lamp current 7 mA Fuel acetylene Support nitrous oxide Flame stoichiometry strongly reducing; red cone 2–3 cm. A brightly luminous air-acetylene flame can be used with poorer sensitivity and increased interference effects. | Wavelength (nm) | Slit Width (nm) | Optimum Working Range
(µg/mL) | |-----------------|-----------------|----------------------------------| | 313.3 | 0.5 | 0.2–100 | | 320.9 | 0.2 | 5–1000 | Many other wavelengths can be used — refer to Reference 1. #### Flame Emission Wavelength 390.3 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide #### Interferences Conflicting statements have been made on interferences in molybdenum atomic absorption. Various workers have found either no interferences or severe interferences from all metals, apparently depending on the solution conditions. In the recommended nitrous oxide-acetylene flame interferences can be suppressed by adding an excess of a refractory element (1000 $\mu g/mL$ Al). - 1. David, D.J., Analyst, 86, 730 (1961). - 2. Ramakrishna, T.V., West, P.W. and Robinson, J.W., Anal. Chim. Acta., 44, 437, (1969). - 3. Kirkbright, G.D., Smith, A.M. and West, T.S., Analyst, 91, 700 (1966). ## Na (Sodium) A.W. 22.99 ## **Recommended Instrument Parameters Atomic Absorption** #### Working Conditions (Fixed) Lamp current 5 mA Fuel acetylene Support air Flame stoichiometry oxidizing | Wavelength (nm) | Slit Width (nm) | Optimum Working Range
(μg/mL) | |-----------------|-----------------|----------------------------------| | 589.0 | 0.5 | 0.002-1.0 | | 589.6 | 1.0 | 0.01-2.0 | | 330.2
330.3 | 0.5 | 2–400 | #### **Flame Emission** Wavelength 589.0 nm Slit width 0.1 nm Fuel acetylene Support air #### Interferences Sodium is partially ionized in the air-acetylene flame. To suppress ionization, add potassium nitrate or chloride solution to give a final concentration of 2000 μ g/mL potassium in all solutions including the blank. ### Nb (Niobium) A.W. 92.91 ## **Recommended Instrument Parameters Atomic Absorption** #### Working Conditions (Fixed) Lamp current 20 mA Fuel acetylene Support nitrous oxide Flame stoichiometry reducing; red cone 1–2 cm | Wavelength (nm) | Slit Width (nm) | Optimum Working Range
(µg/mL) | |-----------------|-----------------|----------------------------------| | 334.9 | 0.2 | 20-6000 | | 358.0 | 0.5 | 20-6000 | | 408.0 | 0.5 | 22–7000 | | 405.9 | 0.5 | 22-7000 | #### Flame Emission Wavelength 405.9 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide #### Interferences Hydrofluoric acid increases the absorbance signal up to 2% HF, but greater concentrations depress the signal. Sodium in the presence of 2% HF depresses the signal. By analogy with zirconium it is expected that 0.1 M NH4F would eliminate some of these interferences and enhance the signal, although data for Nb has not been published. Niobium is appreciably ionized in the nitrous oxide-acetylene flame and it is therefore recommended to add about 0.1% potassium chloride as an ionization suppressant. - 1. Thomas, P.E. and Pickering, W.F., Talanta, 18, 127 (1971). - 2. Bond, A.M., Anal. Chem., 42, 932 (1970). - Sastri, V.S., Chakrabarti, C.L. and Willis, D.E., Talanta, 16, 1093 (1969). ## Nd (Neodymium) A.W. 144.2 ## **Recommended Instrument Parameters Atomic Absorption** #### Working Conditions (Fixed) Lamp current 20 mA Fuel acetylene Support nitrous oxide Flame stoichiometry reducing; red cone 1–2 cm #### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 492.5 | 0.2 | 10–1500 | | 486.7 | 0.2 | 80-10000 | #### Flame Emission Wavelength 660.8 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide The flame emission signal for neodymium is quite intense. Below 350 μ g/mL, determination by flame emission is preferred, although the wavelength required must be accurately isolated to avoid spectral interference from the other rare earth elements. At higher concentrations, atomic absorption is normally used. #### Interferences Neodymium is partially ionized in the nitrous oxide-acetylene flame. To suppress ionization, add potassium nitrate or chloride solution to give a final concentration of 2000 $\mu g/mL$ potassium in all solutions including the blank. The signal is depressed in the presence of 500 $\mu g/mL$ silicon, aluminium, iron, titanium or fluoride. A more oxidizing flame reduces these effects. ### Ni (Nickel) A.W. 58.71 ## **Recommended Instrument Parameters Atomic Absorption** #### Working Conditions (Fixed) Lamp current 4 mA Fuel acetylene Support air Flame stoichiometry
oxidizing A nitrous oxide-acetylene flame can also be used, with poorer sensitivity. #### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|--|----------------------------------| | 232.0 | 0.2 | 0.1–20 | | 341.5 | 0.2 | 1–100 | | 352.5 | 0.5 | 1–100 | | 351.5 | 0.5 | 3–180 | | 362.5 | 0.5 | 100-8000 | | NOTE | The 352.5 nm line is preferred because the calibration is less curved over the working range and the signal is less susceptible to non-atomic absorbance than at the more sensitive 232.0 nm line. | | #### Flame Emission Wavelength 341.5 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide #### Interferences At 232.0 nm wavelength, non-atomic species in the flame absorb strongly. Where the sample has a high concentration of dissolved solids it is necessary to correct for non-atomic absorption by using the background corrector. At 352.5 nm, this effect is negligible even for high matrix solutions. In hydrochloric and perchloric acid solution, a slight (5%) absorbance depression has been observed in the presence of iron, cobalt and chromium. In a more oxidizing flame the effects are minimized and in the nitrous oxide-acetylene flame no interferences are observed. ### Os (Osmium) A.W. 190.2 ## **Recommended Instrument Parameters Atomic Absorption** #### Working Conditions (Fixed) Lamp current 20 mA Fuel acetylene Support nitrous oxide Flame stoichiometry reducing; red cone 1–2 cm An air-acetylene flame can also be used but with poorer sensitivity. #### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 290.9 | 0.2 | 1–300 | | 426.1 | 1.0 | 20-3200 | #### Flame Emission Wavelength 426.1 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide ### P (Phosphorus) A.W. 30.97 ## **Recommended Instrument Parameters Atomic Absorption** #### Working Conditions (Fixed) Lamp current 10 mA Fuel acetylene Support nitrous oxide Flame stoichiometry reducing; red cone 1–2 cm #### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|---|----------------------------------| | 213.6 | 1.0 | 400-30000 | | NOTE | Better linearity is obtained with nar-
rower slit widths. Signal to noise ratio is
increased. | | #### Flame Emission This method is not recommended. #### Interferences The relative lack of sensitivity of phosphorus means that determination by flame atomic absorption spectrometry is not common and the literature contains few references. It is recommended that either an interference study be carried out or matrix-matched standards be used. - Hobbins, William B., "Direct Determination of Phosphorus in Aqueous Matrices by Atomic Absorption", Agilent Instruments At Work, Number AA-19 (1982). - 2. Hobbins, William B., "Direct Determination of Phosphorus in Organic Matrices by Atomic Absorption", Agilent Instruments At Work, Number AA-20 (1982). ### Pb (Lead) A.W.207.19 ## **Recommended Instrument Parameters Atomic Absorption** #### Working Conditions (Fixed) Lamp current 5 mA Fuel acetylene Support air Flame stoichiometry oxidizing #### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 217.0 | 1.0 | 0.1–30 | | 283.3 | 0.5 | 0.5–50 | | 261.4 | 0.5 | 5-800 | | 202.2 | 0.5 | 7–1000 | | 205.3 | 0.5 | 50-8000 | #### Flame Emission Wavelength 405.8 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide #### Interferences No cationic interferences have been reported for the air-acetylene flame, however a number of anionic interferences have been reported. Phosphate, carbonate, iodide, fluoride and acetate suppress lead absorbance significantly at concentrations ten times greater than lead. These interferences can be largely overcome by addition of EDTA solution so that the sample solutions are 0.1 molar with respect to EDTA. At the 217.0 nm wavelength, non-atomic species in the flame absorb strongly. Where the sample has a high concentration of dissolved solids it is necessary to correct for non-atomic absorption. ### Pd (Palladium) A.W. 106.4 ## **Recommended Instrument Parameters Atomic Absorption** #### Working Conditions (Fixed) Lamp current 5 mA Fuel acetylene Support air Flame stoichiometry oxidizing | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 244.80 | 0.2 | 0.1–15 | | 247.6 | 0.2 | 0.2–28 | | 340.5 | 1.0 | 1–140 | #### Flame Emission Wavelength 363.5 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide #### Interferences In the air-acetylene flame the atomic absorption signal is depressed in the presence of aluminium, cobalt or nickel at all concentrations and by hydrofluoric acid. The depression is eliminated in the presence of lanthanum (5000 $\mu g/mL$ as chloride) or EDTA (0.01 M). The interference can be reduced by using a more oxidizing flame and by taking measurements higher in the flame. A nitrous oxide-acetylene flame can be used to overcome the interferences, but the sensitivity is much poorer. #### References Sychra, V., Slevin, P.J., Matousek, J. and Bek, F., Anal. Chim. Acta., 52, 259 (1970). ## Pr (Praseodymium) A.W. 140.9 ## **Recommended Instrument Parameters Atomic Absorption** #### Working Conditions (Fixed) Lamp current (Note 1) 10 mA Fuel acetylene Support nitrous oxide Flame stoichiometry reducing; red cone 1–2 cm Note 1: Absorbance is much lower at increased lamp current. #### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 495.1 | 0.5 | 100-5000 | | 513.3 | 0.5 | 300-8000 | #### Flame Emission Wavelength 284.0 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide The flame emission signal for praseodymium is quite intense. Below $800~\mu g/mL$, determination by flame emission is preferred, although the wavelength required must be accurately isolated to avoid spectral interference from the other rare earth elements. At higher concentrations, atomic absorption is normally used. #### Interferences Praseodymium is partially ionized in the nitrous oxide-acetylene flame. To suppress ionization, add potassium nitrate or chloride solution to give a final concentration of 2000 μ g/mL potassium in all solutions including the blank. The atomic absorption signal is depressed in the presence of silicon at high concentrations ($>2000 \mu g/mL$). ### Pt (Platinum) A.W. 195.09 ## Recommended Instrument Parameters Atomic Absorption #### Working Conditions (Fixed) Lamp current 10 mA Fuel acetylene Support air Flame stoichiometry oxidizing #### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 265.9 | 0.2 | 1–300 | | 299.8 | 0.5 | 10-1200 | #### Flame Emission Wavelength 266.0 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide #### Interferences The atomic absorption signal is depressed in the presence of most other noble metals, and also in the presence of acids. The interferences can be reduced (but not eliminated) by using a more oxidizing flame. Interferences are eliminated if all solutions are made 2% in copper or 1% in lanthanum. A nitrous oxide-acetylene flame can be used to overcome the interferences but the sensitivity is poorer. - 1. Schnepfe, M.M., and Grimaldi, F.S., Talanta, 16, 591 (1969). - Strasheim, A. and Wessels, G.J., Appl. Spectrosc., 17, 65 (1963). - Pitts, A.G., Van Loon, J.C. and Beamish, F.E., Anal. Chim. Acta., 50, 181 (1970); 50, 195 (1970). ### **Rb** (Rubidium) A.W. 85.47 ## **Recommended Instrument Parameters Atomic Absorption** #### Working Conditions (Fixed) Lamp current 20 mA Fuel acetylene Support air Flame stoichiometry oxidizing #### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 780.0 | 0.2 | 0.1–10 | | 794.8 | 0.2 | 0.5–20 | | 420.2 | 0.2 | 10-800 | | 421.6 | 0.2 | 30–2200 | #### Flame Emission Wavelength 780.0 nm Slit width 0.1 nm Fuel acetylene Support air #### Interferences Rubidium is 40-50% ionized in the air-acetylene flame. To suppress ionization, add potassium nitrate or chloride solution to give a final concentration of $2000 \, \mu g/mL$ potassium in all solutions including the blank. In both flames hydrochloric and other acids (0.1 M) depress the atomic absorption signal in the lower regions of the flame but not at higher levels. Any ionizable metal will increase the signal unless excess potassium is added to all solutions. All interference effects except ionization are reduced in the air-acetylene flame. ### Re (Rhenium) A.W. 186.2 ## **Recommended Instrument Parameters Atomic Absorption** #### Working Conditions (Fixed) Lamp current 20 mA Fuel acetylene Support nitrous oxide Flame stoichiometry reducing; red cone 1–2 cm #### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 346.1 | 0.2 | 10-2000 | | 346.5 | 0.2 | 30–4000 | | 345.2 | 0.2 | 35–5200 | #### Flame Emission Wavelength 346.1 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide #### Interferences The atomic absorption signal for rhenium is enhanced in the presence of sulfuric acid
(0.1%–5%) and depressed in the presence of calcium, barium or magnesium (>100 μ g/mL). Most transition group metals depress the signal slightly at any concentration. All of these interferences can be minimized by using a slightly more oxidizing flame. # Rh (Rhodium) A.W. 102.9 # **Recommended Instrument Parameters Atomic Absorption** ### Working Conditions (Fixed) Lamp current 5 mA Fuel acetylene Support air Flame stoichiometry oxidizing ### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 343.5 | 0.5 | 0.05–30 | | 328.1 | 0.2 | 5–1600 | ### **Flame Emission** Wavelength 369.2 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide ### Interferences In an air-acetylene flame, most other elements interfere and the interference depends unpredictably on their concentration. Phosphoric and sulfuric acids depress the signal (constant above 10% concentration). Alkali metal sulfates, on the other hand, enhance the signal strongly although other sulfates give mixed results. Releasing agents mentioned in the literature include: $3\% \text{ NaHSO}_4 \text{ in } 10\% \text{ HCI}$ [1] $1\% \text{ La as La}_2(\text{SO}_4)_3 \text{ in } 2\% \text{ HCI}$ [2] 1 mg/mL U as uranyl nitrate [3] although these reagents are not completely effective in the presence of the other noble metals. In a nitrous oxide-acetylene flame most of these interferences do not arise; only ruthenium and iridium interfere and 0.5% Zn suppresses these effects[4]. ### References - Kallmann, S. and Hobart, E.W., Anal. Chim. Acta., 51, 120 (1970). - Schnepfe, M.M., and Grimaldi, F.S., Talanta, 16, 1461 (1969). - 3. Scarborough, J.M., Anal. Chim., 41, 250 (1969). - 4. Atwell, M.G. and Hebert, J.Y., Appl. Spectrosc. 23, 480 (1969). # Ru (Ruthenium) A.W. 101.1 # **Recommended Instrument Parameters Atomic Absorption** ### Working Conditions (Fixed) Lamp current 10 mA Fuel acetylene Support air Flame stoichiometry oxidizing ### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 349.9 | 0.2 | 1–150 | | 392.6 | 0.2 | 15–1600 | ### Flame Emission Wavelength 372.8 nm Slit width 0.1 nm Fuel acetylene Support air ### Interferences In an air-acetylene flame most other elements and most acids interfere in an unpredictable manner. The only releasing agent discovered so far is uranyl nitrate (4% w/v U), which overcomes all interferences except the depression due to Ti(III). The nitrous oxide flame is recommended to remove many interferences. It has been found that the sensitivity was improved by adding 0.1 M lanthanum nitrate and 0.8 M hydrochloric acid[3]. Mutual interference with the other noble metals has been observed in the air-acetylene flame. Uranium reduces these interferences. Neutral solutions of ruthenium are unstable. ### References - 1. Montford, B. and Cribbs, S.C., Anal. Chim. Acta., 53, 101 (1971). - 2. Scarborough, J.M., Anal. Chem., 41, 250 (1969). - Schwab, M. and Hembree, N., At. Absn. Newsl., 10, 15 (1971). # **Sb** (Antimony) A.W. 121.75 # Recommended Instrument Parameters Atomic Absorption ### Working Conditions (Fixed) Lamp current 10 mA Fuel (Note 1) acetylene Support air Flame stoichiometry oxidizing Note 1: The nitrous oxide-acetylene flame may also be used but shows reduced sensitivity. ### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 217.6 | 0.2 | 0.4-100 | | 206.8 | 0.2 | 0.6-100 | | 231.2 | 0.5 | 1.5–150 | | 212.7 | 1.0 | 5–1000 | ### Flame Emission Wavelength 259.8 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide ### Interferences In an air-acetylene flame, copper and nickel depress the signal, especially in a reducing flame. A more oxidizing flame removes the effect. It has been suggested that the presence of **excess** oxidant in the solution depresses the absorbance, although for pure solutions in either oxidation state no differences in absorbance have been found. It is essential during sample preparation to avoid boiling antimony solutions containing chloride, as otherwise some antimony will be lost. ### **Vapor Generation Method** At low concentrations, this element can be determined by the vapor generation technique. Details of the appropriate procedures are given in the operation manual supplied with the Agilent vapor generation accessory. See also Reference 5. ### References - Yanagisawa, M., Suzuki, M. and Takeuchi, T., Anal. Chim. Acta., 47, 121, (1969). - 2. Mostyn, R.A. and Cunningham, A.F., Anal. Chem., 39, 433 (1967). - 3. Brodie, K.G., Amer. Lab., 9, 73 (1977). - 4. Brodie, K.G., Amer. Lab., 11, 58 (1979). - 5. Agilent Instruments At Work, No. AA-38. # Sc (Scandium) A.W. 44.96 # **Recommended Instrument Parameters Atomic Absorption** Working Conditions (Fixed) Lamp current 10 mA Fuel acetylene Support nitrous oxide Flame stoichiometry reducing; red cone 1–1.5 cm ### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 391.2 | 0.2 | 0.5–80 | | 327.4 | 0.2 | 2–200 | | 326.9 | 0.2 | 3–320 | ### Flame Emission Wavelength 402.0 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide ### Interferences Scandium is partially ionized in the nitrous oxide-acetylene flame. To suppress ionization, add potassium nitrate or chloride solution to give a final concentration of 2000 $\mu g/mL$ potassium in all solutions including the blank. Sulfate or fluoride anions strongly suppress scandium absorption even when these interferents are only present in similar quantities to scandium. Many cations suppress or enhance the absorption when present in one hundred fold excess. To minimize the effects of these interferences, avoid using sulfate or fluoride where possible and ensure that the standard solutions contain the same reagents and major matrix elements at approximately the same concentration. ### References 1. Kriege, O.H. and Welcher, G.G., Talanta, 15, 781 (1968). # Se (Selenium) A.W. 78.96 # **Recommended Instrument Parameters Atomic Absorption** ### Working Conditions (Fixed) Lamp current 10 mA Fuel acetylene Support nitrous oxide Flame stoichiometry highly reducing ### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 196.0 | 1.0 | 5–250 | | 204.0 | 0.5 | 90–1200 | ### **Vapor Generation Method** At low concentrations, this element can be determined by the vapor generation technique. Details of the appropriate procedures are given in the operation manual supplied with the Agilent vapor generation accessory. See also Reference 4. ### Flame Emission Selenium is not generally determined by flame emission because of the poor emission characteristics of the element. ### Interferences At 196.0 nm and 204.0 nm, non-atomic species in the flame absorb strongly. Use a background corrector. ### Reference s - 1. Nakahara, T. et al., Anal. Chim. Acta., 50, 51 (1970). - 2. Brodie, K.G., Amer. Lab., 9, 73 (1977). - 3. Brodie, K.G., Amer. Lab., 11, 58 (1979). - 4. Agilent Instruments At Work, No. AA-38. # Si (Silicon) A.W. 28.09 # **Recommended Instrument Parameters Atomic Absorption** ### Working Conditions (Fixed) Lamp current 10 mA Fuel acetylene Support nitrous oxide Flame stoichiometry strongly reducing yellow outer edge; red cone 2–3 cm high ### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 251.6 | 0.2 | 3–400 | | 250.7 | 0.5 | 10-800 | | 251.4 | 0.2 | 15–1000 | | 252.4 | 0.5 | 15–1000 | | 288.2 | 0.2 | 60-4000 | ### Flame Emission Wavelength 251.6 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide ### Interferences Severe depression of silicon absorbance has been observed in the presence of hydrofluoric acid, boric acid and potassium at significant levels (1%). The effect is minimized by adjusting the flame to neutral stoichiometry (red cone 0.5–1 cm high), with consequent loss of sensitivity. # **Sm (Samarium)** A.W. 150.4 # **Recommended Instrument Parameters Atomic Absorption** ### Working Conditions (Fixed) Lamp current 10 mA Fuel acetylene Support nitrous oxide Flame stoichiometry reducing; red cone 1–1.5 cm ### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 429.7 | 0.2 | 10–1500 | | 476.0 | 0.5 | 20–2400 | ### **Flame Emission** Wavelength 442.4 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide The flame emission signal for samarium is quite intense. Below 300 μ g/mL, determination by flame emission is preferred, although the wavelength required must be accurately isolated to avoid spectral interference from the other rare earth elements. At higher concentrations, atomic absorption is normally used. ### Interferences Samarium is partially ionized in the nitrous oxide-acetylene flame. To suppress ionization, add potassium nitrate or chloride solution to give a final concentration of 2000 $\mu g/mL$ potassium in all solutions including the blank. # Sn (Tin) A.W. 118.69 # **Recommended Instrument Parameters Atomic Absorption** ### Working Conditions (Fixed) Lamp current 7 mA Fuel acetylene Support nitrous oxide Flame stoichiometry reducing; red cone 2 cm ### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 235.5 | 0.5 | 1–200 | | 286.3 | 0.5 | 10–300 | | 224.6 | 0.2 | 5–400 | | 266.1 | 0.5
| 40-3200 | ### **Flame Emission** Wavelength 284.0 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide ### Interferences The nitrous oxide-acetylene flame is recommended for all tin determinations. Early work with air-hydrogen flames showed significant chemical interferences existed[1]. ### References Juliano, P.O. and Harrison, W.W., Anal. Chem., 42, 84 (1970). # Sr (Strontium) A.W. 87.62 # **Recommended Instrument Parameters Atomic Absorption** ### Working Conditions (Fixed) Lamp current 10 mA Fuel acetylene Support nitrous oxide Flame stoichiometry strongly oxidizing; red cone 0.25 cm An air-acetylene flame can also be used but the sensitivity is poorer and chemical interferences are significant. ### **Working Conditions (Variable)** Wavelength (nm) 460.7 Slit width (nm) 0.5 Optimum working range 0.02–10 (µg/mL) ### **Flame Emission** Wavelength 460.7 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide ### Interferences In the air-acetylene flame, silicon, aluminium, titanium, zirconium, phosphate and sulfate depress the signal at all concentrations. These effects can be removed by adding 1% lanthanum as nitrate or chloride to all solutions, or 0.01 M EDTA with 2000 $\mu g/mL$ lanthanum. In the nitrous oxide-acetylene flame these interferences do not occur. Strontium is partially ionized in all flames. To suppress ionization, add potassium nitrate or chloride solution to give a final concentration of 2000 $\mu g/mL$ potassium in all solutions including the blank. ### References - 1. Williams, C.H., Anal. Chim. Acta., 22, 163 (1960). - 2. Adams, P.B. and Passmore, W.O., Anal. Chem., 38, 630 (1966). - Amos, M.D. and Willis, J.B., Spectrochim. Acta., 22, 1325 (1966). # Ta (Tantalum) A.W. 180.95 # **Recommended Instrument Parameters Atomic Absorption** ### Working Conditions (Fixed) Lamp current 20 mA Fuel acetylene Support nitrous oxide Flame stoichiometry reducing; red cone 1–2 cm ### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 271.5 | 0.2 | 20-3000 | | 275.8 | 0.5 | 100-10000 | ### Flame Emission Wavelength 481.3 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide ### Interferences Fluoride and ammonium ions in the absence of alkali metals increase the absorbance signal. In the presence of alkali metals and fluoride the absorbance is depressed. Sulfate depresses the absorbance, and phosphate enhances it up to 2% phosphoric acid — higher concentrations of phosphate depress the absorbance. In the absence of alkali metals, the addition of ammonium fluoride to all solutions (0.1 M) gives improved sensitivity and reduces acid interferences. In the presence of alkali metals no releasing agents are known. Tantalum (V) cupferrate can be extracted from 0.5% tartrate systems at pH 0 with isoamyl alcohol. Tantalum as the fluoride is extracted from 6 M sulfuric acid, 10 M hydrofluoric acid + 2.2 M ammonium fluoride medium into methyl isobutyl ketone. It has been found that the addition of 2000 $\mu g/mL$ of aluminium improves the linearity of tantalum determination[5]. ### References - 1. Thomas, P.E. and Pickering, W.F., Talanta, 18, 127 (1971). - 2. Bond, A.M., Anal. Chem., 42, 932 (1970). - 3. Stary, J., "The Solvent Extraction of Metal Chelates", Pergamon Press, Oxford (1964). - 4. Milner, G.W.C., Barnett, G.A. and Smales, A.A., Analyst, 80, 380 (1955). - 5. At. Spectroscopy, 2, 130 (1981). # Tb (Terbium) A.W. 158.9 # **Recommended Instrument Parameters** # **Atomic Absorption** Working Conditions (Fixed) Lamp current 20 mA Fuel acetylene Support nitrous oxide Flame stoichiometry reducing; red cone 1–1.5 cm ### Working Conditions (Variable) | Wavelength | (nm) S | Slit Width (nm) | Optimum Working
Range (μg/mL) | |------------|--------|-----------------|----------------------------------| | 432.7 | | 0.2 | 7–2000 | | 431.9 | | 0.2 | 15–4000 | | 433.9 | | 0.2 | 20-5200 | ### Flame Emission Wavelength 596.6 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide ### Interferences Terbium is partially ionized in the nitrous oxide-acetylene flame. To suppress ionization, add potassium nitrate or chloride solution to give a final concentration of 2000 µg/mL potassium in all solutions including the blank. Iron, aluminium, silicon and hydrofluoric acid all cause depression of the terbium absorbance. Standard solutions should therefore contain these elements and reagents in approximately the same concentration as in the sample solutions. # Te (Tellurium) A.W. 127.6 # **Recommended Instrument Parameters Atomic Absorption** ### Working Conditions (Fixed) Lamp current 10 mA Fuel acetylene Support air Flame stoichiometry oxidizing ### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 214.3 | 0.2 | 0.3-60 | | 225.9 | 0.5 | 10-800 | | 238.6 | 0.2 | 100-8000 | ### Flame Emission Wavelength 214.3 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide The determination of tellurium by flame emission is not recommended. ### Interferences No severe interferences have been encountered in the air-acetylene flame. At low tellurium concentrations, acids and dissolved carbon dioxide can absorb significant amounts of radiation. It is recommended to check for background absorption by using a background corrector. ### **Vapor Generation Method** At low concentrations, this element can be determined by the vapor generation technique. Details of the appropriate procedures are given in the operation manual supplied with the Agilent vapor generation accessory. See also Reference 3. ### References - 1. Brodie, K.G., Amer. Lab., 9, 73 (1977). - 2. Brodie, K.G., Amer. Lab., 11, 58 (1979). - 3. Agilent Instruments At Work, No. AA-38. # Ti (Titanium) A.W. 47.90 # **Recommended Instrument Parameters Atomic Absorption** ### Working Conditions (Fixed) Lamp current 20 mA Fuel acetylene Support nitrous oxide Flame stoichiometry reducing; red cone 1–1.5 cm ### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 364.3 | 0.5 | 1–300 | | 365.4 | 0.2 | 3–400 | | 399.0 | 0.5 | 6–800 | ### Flame Emission Wavelength 399.8 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide ### Interferences Most metallic elements enhance the titanium absorbance signal at concentrations above $500~\mu g/mL$, probably by competing with titanium for the available oxygen in the flame and reducing the refractory titanium oxide. Sodium above $1000~\mu g/mL$ depresses the signal; fluoride, chloride, and ammonium ions enhance it. Releasing agents include: 1000 µg/mL AI in HCI 2000 µg/mL KCI 0.1 M NH,F ### References - 1. Thomas, P.E. and Pickering, W.F., Talanta, 18, 127 (1971). - Willis, J.B., Appl. Opt., 7, 1295 (1968). - 3. Bond, A.M., Anal. Chem., 42, 932 (1970). - Mostyn, R.A. and Cunningham, A.F., At. Abs. Newsl, 6, 86 (1967). - Sastri, V.S., Chakrabarti, C.L. and Willis, D.E., Talanta, 16, 1093 (1969). # TI (Thallium) A.W. 204.4 # **Recommended Instrument Parameters Atomic Absorption** ### Working Conditions (Fixed) Lamp current 10 mA Fuel acetylene Support air Flame stoichiometry oxidizing ### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 276.8 | 0.5 | 0.2–50 | | 258.0 | 1.0 | 20-4000 | ### **Flame Emission** Wavelength 535.1 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide ### Interferences No interferences have been reported in an air-acetylene flame. Thallium is partially ionized in the nitrous oxide-acetylene flame. To suppress ionization, add potassium nitrate or chloride solution to give a final concentration of 2000 μ g/mL potassium in all solutions including the blank. In the air-acetylene flame ionization is negligible. # **Tm** (Thulium) A.W. 168.9 # **Recommended Instrument Parameters Atomic Absorption** ### Working Conditions (Fixed) Lamp current 20 mA Fuel acetylene Support nitrous oxide Flame stoichiometry reducing; red cone 1–2 cm ### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 371.8 | 0.5 | 0.2-100 | | 420.4 | 1.0 | 1–160 | | 436.0 | 0.2 | 2–500 | | 530.7 | 1.0 | 5–1000 | ### Flame Emission Wavelength 410.6 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide The flame emission signal for thulium is quite intense. Below 10 μ g/mL, determination by flame emission is preferred, although the wavelength required must be accurately isolated to avoid spectral interference from the other rare earth elements. At higher concentrations, atomic absorption is normally used. ### Interferences Thulium is partially ionized in the nitrous oxide-acetylene flame. To suppress ionization, add potassium nitrate or chloride solution to give a final concentration of 2000 $\mu g/mL$ potassium in all solutions including the blank. # V (Vanadium) A.W. 50.94 # **Recommended Instrument Parameters Atomic Absorption** ### Working Conditions (Fixed) Lamp current 20 mA Fuel acetylene Support nitrous oxide Flame stoichiometry reducing; red cone 1–1.5 cm ### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 318.5 | 0.2 | 1–200 | | 318.4 | 0.2 | 2–240 | | 306.6 | 0.5 | 4–600 | | 439.0 | 0.5 | 10–1400 | ### **Flame Emission** Wavelength 437.9 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide ### Interferences Vanadium is not as greatly affected as niobium or tantalum by alkali metal fluorides. Ammonium (0.1 M NH_4F) enhances the signal, as do a large range of other
species. The interferences are removed by adding aluminium (2:1 excess or 2000 $\mu g/mL$). ### References - Sachdev, S.L., Robinson, J.W. and West, P.W., Anal. Chim. Acta., 37, 12 (1967). - 2. Bond, A.M., Anal. Chem., 42, 932 (1970). - 3. Thomas, P.E. and Pickering, W.F., Talanta, 18, 127 (1971). # W (Tungsten) A.W. 183.85 # **Recommended Instrument Parameters Atomic Absorption** ### Working Conditions (Fixed) Lamp current 20 mA Fuel acetylene Support nitrous oxide Flame stoichiometry reducing; red cone 1–2 cm ### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 255.1 | 0.2 | 10–1500 | | 400.9 | 0.5 | 40-4000 | | 407.4 | 0.5 | 80–8000 | ### Flame Emission ### Interferences The 400.9 nm resonance line may be preferred because of an improved signal-to-noise ratio. In phosphoric or sulfuric acid media, tungsten absorbance depends on the presence or absence of iron, cobalt, copper, potassium and various other species. In hydrofluoric acid media, potassium (at least) has no effect. Ammonium fluoride is reported to have no effect on standards containing sodium and potassium. ### References - 1. Thomas, P.E. and Pickering, W.F., Talanta, 18, 127 (1971). - 2. Bond, A.M., Anal. Chem., 42, 932 (1970). # Y (Yttrium) A.W. 88.91 # **Recommended Instrument Parameters Atomic Absorption** ### Working Conditions (Fixed) Lamp current 10 mA Fuel acetylene Support nitrous oxide Flame stoichiometry reducing; red cone 1.5–2 cm ### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 410.2 | 0.5 | 2–500 | | 414.3 | 0.5 | 3–1200 | ### **Flame Emission** Wavelength 407.7 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide ### Interferences The absorbance signal is depressed in the presence of aluminium, potassium and phosphoric acid at all concentrations. Yttrium is partially ionized in the nitrous oxide-acetylene flame. To suppress ionization, add potassium nitrate or chloride solution to give a final concentration of 4000 μ g/mL potassium in all solutions including the blank. The absorbance depression due to potassium is not severe at these concentrations. # Yb (Ytterbium) A.W. 173.04 # **Recommended Instrument Parameters Atomic Absorption** ### Working Conditions (Fixed) Lamp current 5 mA Fuel acetylene Support nitrous oxide Flame stoichiometry reducing; red cone 1.5–2 cm ### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 398.8 | 0.5 | 0.04–15 | | 246.5 | 0.2 | 2–400 | | 267.3 | 0.2 | 20-4000 | ### Flame Emission Wavelength 398.8 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide The flame emission signal for ytterbium is quite intense. Below 3 µg/mL, determination by flame emission is preferred, although the wavelength required must be accurately isolated to avoid spectral interference from the other rare earth elements. At higher concentrations, atomic absorption is normally used. ### Interferences Ytterbium is partially ionized in the nitrous oxide-acetylene flame. To suppress ionization, add potassium nitrate or chloride solution to give a final concentration of 2000 $\mu g/mL$ potassium in all solutions including the blank. Ytterbium absorbance and emission signals are depressed in the presence of hydrofluoric acid, iron, aluminium and silicon at all concentrations. # Zn (Zinc) A.W. 65.37 # **Recommended Instrument Parameters Atomic Absorption** ### Working Conditions (Fixed) Lamp current 5 mA Fuel acetylene Support air Flame stoichiometry oxidizing All other conventional flames can be used. ### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 213.9 | 1.0 | 0.01-2 | | 307.6 | 1.0 | 100–14000 | ### **Flame Emission** Wavelength 213.9 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide ### Interferences No chemical interferences have been found in an air-acetylene flame. At the 213.9 nm wavelength, non-atomic species in the flame absorb strongly. Where the sample has a high concentration of dissolved solids it is necessary to correct for non-atomic absorption. # **Zr (Zirconium)** A.W. 91.22 # **Recommended Instrument Parameters Atomic Absorption** ### Working Conditions (Fixed) Lamp current 20 mA Fuel acetylene Support nitrous oxide Flame stoichiometry reducing; red cone 1.5–2 cm ### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 360.1 | 0.2 | 10-2000 | | 468.8 | 0.2 | 100–16000 | ### Flame Emission Wavelength 360.1 nm Slit width 0.1 nm Fuel acetylene Support nitrous oxide ### Interferences Zirconium is ionized in this flame and 0.1% potassium (as chloride) should be added to suppress ionization. It is best to avoid oxygen containing anions (sulfate, nitrate) which tend to suppress the absorbance. Hydrofluoric acid (3%) enhances the signal but at higher concentration gives a slight depression. Ammonium ion and chloride ion (0.1 M) and neutral fluoride compounds give enhancement and remove at least some of the metallic interferences. The addition of ammonium fluoride (0.1 M) has been recommended. The effects are minimized with a more oxidizing flame but sensitivity is reduced. Addition of aluminium chloride has been found to improve the sensitivity and linearity. ### References - 1. Thomas, P.E. and Pickering, W.F., Talanta, 18, 127 (1971). - 2. Bond, A.M., Anal. Chem., 42, 932 (1970). - 3. Atomic Spectroscopy, 3, 143 (1982). # 3. STANDARD CONDITIONS (INDIRECT METHODS) | Chloride, Cl | 49 | |---|----| | Phosphate, PO ₄ and Silicate, SiO ₃ | 51 | | Sulfate, SO, | 53 | # Chloride, Cl A.W. 35.45 The first step in determining chloride by atomic absorption spectrometry is to quantitatively precipitate silver chloride by the addition of a known amount of silver nitrate. The amount of chloride in the original sample is then determined by either of two methods: - The determination of excess silver in the solution after the precipitated silver chloride has been removed. - Redissolving the precipitate in ammonia and the analyzing the ammoniacal solution for the recovered silver. In both methods the conditions used are the standard conditions applicable to the normal atomic absorption determination of silver. Aqueous silver standards are used in the calibration. When the sample solution contains very low concentrations of chloride, an alternative method of calibration is to employ standard solutions of sodium chloride which contain amounts of chloride similar to that expected in the sample. The sodium chloride solutions are treated in the same way as the sample and can then be used as secondary standards for the determination of chloride in the sample. ### References - 1. Reichel, W. and Acs, L., Anal. Chem., 41, (13), 1886 (1969). - 2. Truscott, E.D., ibid, 42, (13), 1657 (1970). # **Recommended Instrument Parameters Atomic Absorption** Working Conditions (Fixed) Lamp current 4 mA Fuel acetylene Support air Flame stoichiometry oxidizing Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 328.1 | 0.2 | 0.02-10 | | 338.3 | 0.2 | 0.06-20 | ### Method 1 ### Range 0.5-5.0 mg CI ### Interferences lodide, bromide, cyanide and sulfide interfere by precipitating as silver compounds. Chromate interference is minimized under the dilute acid conditions specified. ### Reagents Silver solution: Prepare a solution containing 1000 mg/L Ag. Nitric acid: Extra pure, chloride-free (S.G. 1.40). ### Sample Preparation Place an aliquot of sample solution, containing 0.5 to 5.0 mg of chloride, in a 200 mL volumetric flask. Add 20 mL of 1000 mg/L silver solution and 1 mL chloride-free nitric acid. Make up to volume with distilled water. The solution contains 100 mg/L Ag. Allow the mixture to stand overnight in a dark place to prevent photochemical reactions taking place. Centrifuge an aliquot of the supernatant liquid slurry for 10 minutes. For analysis, take 10 mL of the clear solution and dilute to 100 mL with distilled water. For a sample containing 5.0 mg chloride, the analytical solution will contain approximately 9.3 mg/L excess silver. ### **Standard Preparation** Prepare a standard containing 50 mg/L Ag in 1% (v/v) chloride-free nitric acid. Prepare calibration standards containing 0, 1.0, 2.5, 5.0, 7.5, $10.0 \ mg/L \ Ag.$ ### **Instrument Parameters** Use the 338.3 nm wavelength. ### **Analysis** Take replicate absorbance readings of the sample and standard solutions. Compare these absorbances and calculate the concentration of excess silver in the sample solution. Excess silver (mg/L) = mg/L Ag x dilution factor Therefore: Amount of chloride in sample solution (mg) [100 - concentration of excess silver (mg/L)] x 0.329 x sample solution volume (mL) / 1000 Concentration of chloride (mg/L) = amount of chloride (mg) / volume of sample aliquot (liter) ### Method 2 # Range 0.5-5.0 mg chloride ### Interferences Bromide and cyanide interfere by precipitation silver compounds which are soluble in ammonia. lodide and chromate interference is minimized under the conditions specified. ### Reagents Silver solution: Prepare a solution containing 1000 mg/L Ag. Ammonia solution: Dilute extra pure (50% v/v) ammonia solution (S.G. 0.91) 1:1 with distilled water. Nitric acid: Extra pure, chloride-free (S.G. 1.40) ### Sample Preparation Place an aliquot of sample containing 0.5 to 5.0 mg of chloride in a 250 mL covered beaker. Add 20
mL of 1000 mg/L silver solution and 1 mL chloride-free nitric acid. Dilute to approximately 200 mL with distilled water and allow to stand overnight in a dark place. Filter the solution through a sintered glass crucible (porosity 3). Wash the precipitate twice with 10 mL aliquots of 1% (v/v) nitric acid and discard the washings. Dissolve the precipitate in 10 mL of 50% (v/v) ammonia solution. Use a second 10 mL aliquot to complete the dissolution and rinse the vessel. Wash twice with 5 mL distilled water. Combine the ammonia solutions and washings, transfer to a 100 mL volumetric flask and make up to volume with distilled water. For analysis, take 5 mL of prepared solution and dilute to 100 mL with distilled water. For a sample containing 5.0 mg chloride, the analytical solution will contain approximately 7.5 mg/L Ag. ### **Standard Preparation** Prepare a standard containing 50 mg/L Ag in 1% (v/v) chloride-free nitric acid. Prepare calibration standards containing 0, 1.0, 2.5, 5.0, 7.5, 10.0 mg/L Ag. ### **Instrument Parameters** Refer to silver standard conditions above. Use the 338.3 nm wavelength. ### **Analysis** Take replicate absorbance readings of the sample and standard solutions. Compare the absorbances and calculate the concentration of silver in solution and hence the concentration of chloride in the sample. Concentration of = mg/L Ag x dilution factor silver (mg/L) Amount of chloride in sample solution (mg) [100 - concentration of excess silver (mg/L)] x 0.329 x sample solution volume (mL) / 1000 Concentration of chloride (mg/L) = = amount of chloride (mg) / volume of sample aliquot (liter) # Phosphate, PO₄ and Silicate, SiO₃ M.W. 94.97, 76.09 Phosphate and silicate can be indirectly determined by atomic absorption spectrometry by the estimation of the molybdenum content of certain molybdate complexes. Both phosphate and silicate ions form heteropoly acid complexes with acidic molybdate solutions. To prevent mutual interference in the atomic absorption analysis, the complexes are selectively separated by solvent extraction. The heteropoly acids are then decomposed by treatment with a basic buffer solution to liberate the molybdenum which is then determined by atomic absorption. ### **Phosphate** The method depends upon the separation of the two heteropoly acids by means of extraction with diethyl ether. The molybdophosphoric acid is retained in the organic phase and is back-extracted with a basic aqueous buffer solution. The heteropoly acid complex is decomposed to leave the molybdenum in the aqueous phase. Standard phosphorous solutions are treated in a like manner and the molybdenum absorbance calibrated against known amounts of phosphorous. The phosphorous content of the original sample is then calculated by comparison with the phosphorous standards. ### **Silicate** The molybdosilicic acid complex is retained in the aqueous phase of the diethyl ether extraction. To isolate the complex, the aqueous solution is then extracted into a diethyl ether:pentanol mixture. The organic heteropoly complex is decomposed by back-extraction with basic buffer solution to leave the molybdenum in the aqueous phase. Standard silicon solutions are treated in a like manner and the molybdenum absorbance calibrated against known amounts of silicon. The silicon content of the original sample is then calculated by comparison with the silicon standards. ### References - 1. Zang, W.S. and Knox, R.J. Anal. Chem., 38, (12), 1759 (1966). - 2. Kirkbright, G.F., Smith, A.M. and West, T.S., Analyst, 92, 411 (1967). - 3. Hurford, T.R. and Boltz, D.F., Anal. Chem., 40, (2), 379 (1968). - 4. Ramakrishna, T.V., Robinson, J.W. and West, P.W., Anal. Chim. Acta., 45, 43, (1969). ### **Recommended Instrument Parameters** ### Working Conditions (Fixed) Lamp current 7 mA Fuel acetylene Support nitrous oxide Flame stoichiometry strongly reducing; red cone 2-3 cm. ### Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range (µg/mL) | |-----------------|-----------------|----------------------------------| | 313.3 | 0.2 | 0.2-100 | | 320.9 | 0.2 | 5–1000 | ## **Phosphate** ### Range 0.01-0.13 mg phosphorous 0.03-0.4 mg phosphate ### Reagents ### Ammonium molybdate solution (10% w/v) Dissolve 25.00 g of A.R. ammonium molybdate in distilled water and dilute to 250 mL. ### **Buffer solution** Dissolve 53.30 g of A.R. ammonium chloride in distilled water. Add 70 mL of A.R. ammonium solution and dilute to 1 liter. ### Sample Preparation ### Formation of heteropoly acids Place 10 mL of sample solution in a 125 mL separating funnel. Add 1 mL 1:2 hydrochloric acid and adjust the total volume to approximately 50 mL. Add 4 mL ammonium molybdate solution, swirl to mix and allow to stand for 10 minutes; the pH of the solution should be approximately 1.3. Add 5 mL concentrated hydrochloric acid, mix and allow to stand for a further 5 minutes. # Separation of molybdophosphoric acid and molybdosilicic Add 45 mL A.R. diethyl ether and shake vigorously for 3-4 minutes. Allow the phases to separate and transfer the entire lower aqueous layer to another separating funnel for the subsequent determination of silicon. Wash the tip of the original funnel with distilled water and add the washings to the aqueous layer. ### **Decomposition of molybdosilicic acid** To remove excess molybdenum, add 10 mL 1:10 hydrochloric acid to the ether extract and mix well. Discard the acid layer, washing the tip of the funnel. Add 30 mL of buffer solution, shake for 30 seconds and withdraw the aqueous layer into a 50 mL volumetric flask. Repeat with a further 15 mL of buffer solution. Dilute the combined aqueous layers to 50 mL with distilled water. Determine the molybdenum absorbance on this solution. ### **Standard Preparation** Dissolve 2.200 g of A.R. potassium dihydrogen phosphate (KH_2PO_4) in distilled water and dilute to 1 liter to give a solution containing 500 mg/L phosphorous. Prepare a standard containing 10 mg/L phosphorous by dilution of the 500 mg/L phosphorous solution. Take 1, 2, 5, 10 mL aliquots of the 10 mg/L phosphorous standard to give 0.01, 0.02, 0.05, 0.1 mg phosphorous. Treat the standard aliquots in the same manner as the sample solution and determine the molybdenum absorbance for this range of phosphorous. ### **Instrument Parameters** Refer to molybdenum standard conditions above. Use the 313.3 nm wavelength. Scale expansion may be required. ### **Analysis** Take replicate absorbance readings of the sample and phosphorous standard solutions. Compare these absorbances and calculate the amount of phosphorous in the sample. Concentration of phosphorous (mg/L) amount of phosphorous (mg) /volume of sample aliquot (liter) ### **Silicate** ### Range 0.01-0.13 mg silicon ### Reagents Refer to phosphate section. Diethyl ether:pentanol solution (5:1) Prepare a mixture fresh daily. ### **Sample Preparation** Refer to phosphate section. ### **Decomposition of Molybdosilicic Acid** To the aqueous molybdosilicic fraction obtained from the separation of the heteropoly acids, add 5 mL hydrochloric acid and mix well. Allow to stand for 5 minutes, add 20 mL 5:1 diethyl ether-pentanol solution and shake vigorously for 3 minutes. Allow to settle and discard the aqueous layer containing excess molybdenum. Wash the organic extract with two 25 mL portions of 1:10 hydrochloric acid shaking for 30 seconds each time. Discard the washings and rinse the tip of the funnel with distilled water. Add 30 mL of buffer solution, shake for 30 seconds and withdraw the aqueous layer into a 50 mL volumetric flask. Repeat with a further 15 mL of buffer solution. Dilute the combined aqueous layers to 50 mL with distilled water. Determine the molybdenum absorbance on this solution. ### Standard Preparation Prepare a standard containing 10 mg/L Si by dilution of a 1000 mg/L silicon solution. Take 1, 3, 5, 10 mL aliquots of the 10 mg/L silicon standard to give 0.01, 0.02, 0.05, 0.1 mg silicon. Treat the standard aliquots in the same manner as the sample solution and determine the molybdenum absorbance for this range of silicon. # Sulfate, SO₄ M.W. 96.06 The quantitative reaction of sulfate with barium chloride to produce barium sulfate is used as a basis for the indirect determination of the sulfate ion by atomic absorption spectrometry. The amount of sulfate in the original sample is then estimated by either of two methods: - The determination of excess barium in the solution after the precipitated barium sulfate has been removed by filtration. - The redissolution of the precipitate in EDTA solution followed by the determination of the recovered barium. In both methods the conditions used for the analysis of the barium content are those applicable to the normal atomic absorption determination of barium. The barium sulfate is precipitated under controlled conditions of temperature and acidity to minimize errors caused by the solubility of the barium sulfate at low concentrations. In addition, calibration of the method is best achieved by determining the barium content of a range of sulfate standards which are subject to the same treatment as the sample solutions. A series of recovery values are used to check for coprecipitation by other species. ### References - 1. Cullum, D.C. and Thomas, D.B., Analyst, 85, 688 (1960). - 2. Dunk, R., Mostyn, R.A. and Hoare, H.C., Atomic Absorption News, 8, (4), 79 (1969). # **Barium Standard Conditions** ### **Recommended Instrument Parameters** Working Conditions (Fixed) Lamp current (Note 1) 20 mA Fuel acetylene Support nitrous oxide Flame stoichiometry reducing; red cone 2–3 cm high Note 1: Because of the strong emission signals from barium at the resonance wavelength it is recommended that where levels in excess of 10 $\mu g/mL$ are to be measured the lamp current be increased to 20 mA to minimize photomultiplier noise Working Conditions (Variable) | Wavelength (nm) | Slit Width (nm) | Optimum Working
Range
(µg/mL) | |-----------------|-----------------|----------------------------------| | 313.3 | 0.2 | 0.2-100 | | 320.9 | 0.2 | 5–1000 | ### Interferences Barium is partially ionized in the nitrous oxide-acetylene flame. To suppress ionization, add potassium nitrate or chloride solution to give final concentration of 2000 $\mu g/mL$ potassium in all solutions including the blank. ### Method 1 ### Range 0.2-2.0 mg SO₄ ## Reagents Barium solution (200 mg/L Ba): Refer to barium standard conditions above. Prepare a solution containing 200 mg/L Ba by dilution of a 1000 mg/L barium standard. Hydrochloric acid (0.2 M): Dilute 1.8 mL of concentrated hydrochloric acid to 100 mL with distilled water. ### **Sample Preparation** Transfer 10 mL of sample solution to a 50 mL volumetric flask. Place in a water bath, add 5 mL 0.2 M hydrochloric acid and allow the temperature to reach 90–95°C. Add 10 mL of 200 mg/L barium solution slowly with frequent mixing. Continue to warm on the water bath for about 5 minutes after the addition of the barium solution. Allow to cool and make up to volume with distilled water. Allow to stand overnight. Decant off a portion of the supernatant liquid and centrifuge if necessary to obtain a clear solution. Take 10 mL of clear solution, add 1 mL of a solution containing 100 g/L potassium and dilute to 50 mL with distilled water. For a sample containing 2.0 mg sulfate, the analytical solution will contain approximately 4.5 mg/L excess barium with 2000 mg/L added potassium. ### **Standard Preparation** ### **Barium Standards** Prepare standards containing 0, 2.5, 5, 7.5, 10, 15, 20 mg/L Ba with the addition of 2000 mg/L potassium. ### **Sulfate Standards** 1000 mg/L sulfate solution: Dissolve 1.4797 g of dried A.R. anhydrous sodium sulfate in distilled water and dilute to 1 liter. The solution will contain 1000 mg/L sulfate. Prepare standards containing 10, 25, 50, 100, 150, 200 mg/L sulfate. Take 10 mL aliquots of the sulfate standards and treat them according to the procedure given in sample preparation. The analytical solutions will contain 0.01, 0.025, 0.05, 0.1, 0.15, 0.2 mg sulfate. ### **Instrument Parameters** Refer to barium standard conditions above. Use the 553.6 nm wavelength. ### Analysis Take replicate absorbance readings of the barium in the sample and sulfate standard solutions. Compare these absorbances and calculate the concentration of sulfate in the sample. Amount of sulfate = in sample (mg) standard sulfate (mg) x dilution factor Concentration of sulfate (mg/L) amount of sulfate (mg) / volume of sample aliquot (liter) # **Recovery Values** The estimation of sulfate by the quantitative precipitation of barium sulfate is prone to errors of coprecipitation, nonselectivity and operator technique. In order to check for these errors, the excess barium resulting from the precipitation of standard sulfate is compared with standard barium solutions. Take replicate absorbance readings of the barium in the standard sulfate and standard barium solutions. Compare these absorbances and calculate the concentration of available sulfate in the sulfate standards. excess barium = mg/L Ba x dilution factor (mg/L) Amount of sulfate = (mg) [80 - concentration of excess barium (mg/L) $] \times 0.704 \times$ solution volume (mL) / 1000 Concentration of sulfate (mg/L) amount of sulfate (mg) / volume of aliquot (liter) The concentration of available sulfate found in the standard sulfate solutions is then compared with the initial added values to give a percentage yield. %Recovery = concentration of sulfate found (mg/L) / initial concentration of sulfate standard (mg/L) x 100 ### Method 2 ### Range 0.2-2.0 mg SO₄ ### **Sample Preparation** Take 10 mL of sample solution, place in a 100 mL covered beaker and precipitate the barium sulfate using the conditions given in Method 1; final volume of solution approximately 50 mL. Allow to stand overnight and filter through a sintered glass crucible (porosity 3). Wash the precipitate with two 5 mL portions of distilled water. An alternative procedure is to centrifuge the solution; discard the supernatant liquid; add 10 mL of distilled water and stir thoroughly; centrifuge and discard the supernatant liquid again. Redissolve the precipitate in 8 mL 1% (w/v) sodium EDTA solution by warming gently. Transfer to 100 mL volumetric flask and make up to volume with distilled water. For a sample solution containing 2.0 mg sulfate, the prepared solution will contain approximately 29 mg/L Ba. ### **Standard Preparation** ### **Barium Standards** Prepare standards containing 0, 2, 5, 10, 15, 20, 25, 30 mg/L Ba with the addition of 1% (w/v) sodium EDTA at a concentration of 8 mL/100 mL solution. ### **Sulfate Standards** Refer to Method 1. Prepare standards containing 10, 25, 50, 100, 150, 200 mg/L Take 10 mL aliquots to give standards containing 0.1, 0.25, 0.5, 1.0, 1.5, 2.0 mg sulfate. Treat the standard aliquot in the same manner as the sample solution and determine the barium absorbance for this range of sulfate. ### **Instrument Parameters** Refer to barium standard conditions above. Use the 553.6 nm wavelength. ### Analysis Take replicate absorbance readings of the barium in the sample and sulfate standard solutions. Compare these absorbances and calculate the concentration of sulfate in the sample. Amount of sulfate = standard sulfate (mg) x in sample (mg) dilution factor Concentration of = amount of sulfate (mg) / sulfate (mg/L) volume of sample aliquot (liter) ### **Recovery Values** Refer to Method 1. Take replicate absorbance readings of the barium in the standard sulfate and standard barium solutions. Compare these absorbances and calculate the concentration of available sulfate in the sulfate standards. Amount of sulfate = concentration of barium found $(mg/L) \times 0.704 \times solution$ volume (mL) / 1000 Concentration of sulfate (mg) amount of sulfate (mg) / volume of sample aliquot (mg/L) (liter) The concentration of available sulfate found in the standard sulfate solutions is then compared with the initial values to give a percentage yield. %Recovery = concentration of sulfate found (mg/L) / initial concentration of sulfate standard (mg/L) x 1000 # 4. METHODOLOGY | Environmental | 55 | |--------------------|-----| | Food & Agriculture | 58 | | Chemical | 63 | | Industrial | 66 | | Minerals | 72 | | Metallurgy | 83 | | Petroleum | 100 | ### **Environmental** # Air # AI (Aluminium) ### **Typical values** Non urban areas $0.08 \mu g/m^3$ Metropolitan residential $0.2 \mu g/m^3$ Industrial $0.6 \mu g/m^3$ ### **Sample Preparation** Refer to cadmium in air. For a sample with 0.6 $\mu g/m^3\,AI$ and sampling rate of 1.5 m³/min, the solution will contain 25.8 µg/mL Al. ### **Standard Preparation** Prepare calibration standards containing 0, 10, 20, 50, 80 $\mu g/$ mL Al using nitric acid solution at the same concentration as in the sample solution. # Cd (Cadmium) ### **Typical values** Natural levels up to 0.001 $\mu g/m^3$ High city averages 0.065 $\mu g/m^3$ Near smelters or other sources of cadmium emission 1.0 $\mu q/m^3$ ### **Sample Preparation** Draw air with a high volume sampler through a preconditioned* fiberglass filter at the rate of 1.5–2.0 m³/min. *The fiberglass filter is preconditioned by flash firing in a muffle furnace at 400 °C for 20–30 minutes to destroy the organic binders. When cooled down the filter is washed with 50% v/v nitric acid, dried and stored in a desiccator until required for use. Collect the sample for a 24 hour period. Remove the filter from the sampler and place in a muffle furnace at 250 °C for one hour. Cool the filter down and place in a suitable flask with 100 mL of 50% v/v nitric acid. Heat the contents of the flask and maintain just below the boiling temperature for 45 minutes. Filter the extract through a prewashed Whatman 540 paper and repeat the nitric acid extraction by heating for 45 minutes. Combine the filtrate and washings and boil down to moist salts. Redissolve in nitric acid and dilute to 50 mL with distilled water. For air with 0.01 $\mu g/m^3$ Cd at a flow rate of 1.5 m³/min the solution will contain 0.43 $\mu g/mL$ Cd. ### **Standard Preparation** Prepare calibration standards containing 0, 0.2, 0.5, 1, 2 μ g/mL Cd. The standard solutions should contain nitric acid at the same concentration as in the sample solution. Other major elements should also be matched. # Cu (Copper) ### **Typical values** Non urban area $0.01 \mu g/m^3$ Metropolitan residential $0.06 \mu g/m^3$ Industrial $1.0 \mu g/m^3$ ### **Sample Preparation** Refer to cadmium in air. For a sample with 0.1 μ g/m³ Cu and sampling flow rate of 1.5 m³/min, the sample solution will contain 4.3 μ g/mL Cu. ### **Standard Preparation** Prepare calibration standards containing 0, 1, 2, 5, 8 $\mu g/mL$ Gu. The concentration of nitric acid in the standard should be approximately the same as in the sample solution. # Fe (Iron) ### **Typical values** $\begin{array}{ll} \text{Non urban area} & 0.06 \ \mu\text{g/m}^3 \\ \text{Metropolitan residential} & 0.18 \ \mu\text{g/m}^3 \\ \text{Industrial} & 0.82 \ \mu\text{g/m}^3 \\ \end{array}$ ### **Sample Preparation** Refer to cadmium in air. For a sample with $0.2 \,\mu g/m^3$ Fe and sampling flow rate of $1.5 \,m^3/min$, the sample solution will contain $8.6 \,\mu g/mL$ Fe. ### **Standard Preparation** Prepare calibration standards containing 0, 5, 10, 20, 50 $\mu g/$ mL Fe. Adjust concentration of nitric acid in the standards to match content in the sample solution. # Pb (Lead) ### **Sample Preparation** Refer to procedure recommended for cadmium in air. For air sample containing 0.2 μ g/m³ Pb and sampling flow rate of 1.5 m³/min, the sample solution will contain 8.6 μ g/mL Pb. ### **Standard Preparation** Prepare calibration standards containing 0, 2, 5, 10, 20 $\mu g/mL$ Pb using dilute nitric acid of the same concentration as in the sample solution for dilution ### **Natural Water** # As
(Arsenic) ### **Vapor Generation Technique** At low concentrations, this element con be determined by the vapor generation technique. Details of the appropriate procedures are given in the operation manual supplied with the Agilent vapor generation accessory. ### Range 40-500 ng arsenic i.e., 0.004-0.05 mg/L arsenic in a 10 mL sample. The lower limit is highly dependent on the level of arsenic in the blank, i.e., the amount of arsenic contained in the reagents. ### Interferences At the 193.7 nm wavelength, non-atomic absorption due to molecular species will necessitate the use of background correction. Chemical interferences can be encountered in the generation of arsine. Oxidizing agents can prevent the reaction entirely. Excess nitric acid in particular must be absent from the test solution. Metals such as copper, which form a precipitate with potassium iodide, cannot be tolerated in large excess. ### **Sample Preparation** No preparation is required. ### **Standard Preparation** Prepare calibration standards containing 0, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05 μ g/mL (mg/L) arsenic so that 10 mL aliquots will contain 0, 50, 100, 200, 300, 400, 500 ng arsenic. # Hg (Mercury) ### **Cold Vapor Technique** Essentially, the method depends on the reduction of available mercury in a reducible state (mainly $\mathrm{Hg_2}^+$) to the elemental state by reaction with stannous chloride. i.e. $$Hg_2^+ + Sn_2^+ \rightarrow Hg + Sn_4^+$$ The mercury vapor is then purged into an absorption cell which is located in the light path of the spectrometer in place of the normal flame burner. The resultant absorbance peak is then measured. ### Range Up to 600 ng Hg i.e., 0.012 mg/L Hg in a 50 mL sample. Detection limit: 2 ng Hg (0.00004 mg/L in a 50 mL sample). ### **Interferences** Metallic ions which are reduced to the elemental state by stannous chloride will interfere if they amalgamate or form stable compounds with mercury. For example, gold, platinum, selenium and tellurium have been found to interfere at various concentrations as have iodide, bromide and thiosulfate. If interference is suspected, it can be checked by the standard additions method. The use of background correction to correct for non-atomic absorption may be necessary. ### References - 1. Omang, S.H., Anal. Chim. Acta., 53, 415 (1971). - 2. Kopp, J., E.P.A. Newsletter, April, p.7 (1972). - 3. Brodie, K.G., Amer. Lab., 9, 73 (1977). - 4. Brodie, K.G., Amer. Lab., 11, 58 (1979). - 5. Agilent Instruments At Work, No. AA-38. ### **Special Reagents** Stannous chloride solution 20%: Add 40 g of A.R. stannous chloride to 200 mL concentrated hydrochloric acid. Boil gently in a covered beaker until dissolved. Add one piece of A.R. granulated tin and allow to cool. To ensure that the solution remains in the stannous state, it is necessary to add a granule of metallic tin periodically so that an excess is always present. Potassium permanganate solution 2%: Dissolve 2 g of A.R. potassium permanganate in 100 mL distilled water. Potassium persulfate 5%: Dissolve 5 g of A.R. potassium persulfate in 100 mL distilled water. Hydroxylamine hydrochloride 3%: Dissolve 3 g of A.R. hydroxylamine hydrochloride in 100 mL distilled water. ### **Sample Preparation** Mercury may be present in water as free (ionic) mercury or as organically-bound mercury. Free mercury is readily reduced by stannous chloride but the organically-bound mercury must be pre-digested so that the total mercury content can be measured. ### **Total mercury-pre-digestion** Take replicate 50 mL aliquots of sample. Add 10 mL 1:1 sulfuric acid and 1 mL of 2% potassium permanganate solution. Allow to stand for 15 minutes and then add 1 mL of 5% potassium persulfate. Heat the mixture to 95 °C on a water bath for about one hour. Cool and add 3% hydroxylamine solution until permanganate color is discharged. ### **Standard Preparation** Prepare calibration standards containing 0, 0.002, 0.004, 0.008 and 0.012 μ g/mL (mg/L) mercury. All solutions should have a final acid concentration of 10% nitric acid. ### Se (Selenium) ### **Vapor Generation Technique** At low concentrations, this element can be determined by the vapor generation technique. Details of the appropriate procedures are given in the operation manual supplied with the Agilent vapor generation accessory. In this method, any selenium(VI) in solution is reduced to selenium(IV) by the action of hot 50% hydrochloric acid. ### Range 40-1000 ng selenium i.e., 0.004-0.1 mg/L selenium in a 10 mL sample. The lower limit is dependent on the amount of selenium contained in the reagent blank. ### Interferences At the 196.0 nm wavelength, non-atomic absorption due to molecular species may necessitate the use of background correction. Chemical interference can be encountered in the generation of hydrogen selenide. Oxidizing agents can prevent the reaction entirely. Excess nitric acid in particular must be absent from the test solution. lodide ions must be avoided. Metals such as copper, which form a precipitate with potassium iodide, cannot be tolerated in large excess. ### References - 1. Holak, W., Anal. Chem., 41, 1712 (1969) - 2. Brodie, K.G., Amer. Lab., 9, 73 (1977). - 3. Brodie, K.G., Amer. Lab., 11, 58 (1979). - 4. Agilent Instruments At Work, No. AA-38. ### **Sample Preparation** No preparation is required. ### **Standard Preparation** Prepare calibration standards containing 0, 0.005, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1 μ g/mL (mg/L) selenium. # **Sewage Effluent** ## Cr (Chromium) ### Range 0.1-1.0 µg/mL Cr ### Interferences High levels of iron, cobalt and chloride can cause interference unless optimum flame conditions are used. ### **Sample Preparation** Samples must be collected in acid washed containers. Acidify the sample by addition of hydrochloric acid to level of 1%. ### **Standard Preparation** Prepare calibration standards containing 0, 0.1, 0.5 and 1.0 $\mu g/mL\ Cr$ in 1% hydrochloric acid. # Food & Agriculture ### Beer # Fe (Iron) ### **Typical Analysis** Fe 0.1 µg/mL ### Interferences Interference is experienced from the dissolved carbon dioxide causing irregular aspiration of the sample. This is overcome by degassing the sample prior to analysis. The viscosity levels of some beers can cause standardization problems and it is recommended that a standard addition technique be used. Background correction is used to correct for non-atomic absorption. ### **Sample Preparation** De-gas the sample by pouring it into a beaker and stirring vigorously to ensure air entrainment. Dilute duplicate 25 mL aliquots of sample to 50 mL, with the addition of 0.5 mL of a 10 $\mu g/mL$ Fe solution to one of the aliquots. ### **Standard Preparation** Prepare a standard solution containing 10 μg/mL Fe. # K (Potassium) ### **Typical Analysis** K 400 μg/mL ### **Sample Preparation** Partially de-gas the sample by pouring it into a beaker and stirring vigorously. Dilute 1 mL sample to 500 mL. For 400 μ g/mL K, the solution concentration will be approximately 0.8 μ g/mL K. ### **Standard Preparation** Prepare calibration standards containing 0, 0.5, 0.75, 1.0 $\mu g/$ mL K. # Na (Sodium) ### Range Up to 300 µg/mL Na ### **Typical Analysis** Fe $0.1 \,\mu g/mL$ K $700 \,\mu g/mL$ Na $200 \,\mu g/mL$ ### **Sample Preparation** Refer to iron in beer. Dilute 25 mL beer to 50 mL. For 200 μ g/mL Na, the solution concentration will be approximately 100 μ g/mL Na. ### **Standard Preparation** Prepare standards containing 0, 50, 100, 150 $\mu g/mL$ Na, with the addition of 350 $\mu g/mL$ K and an appropriate alcohol level to match the sample. ### **Fish** # Hg (Mercury) Cold vapor technique ### Interferences Various materials in the fish digest interfere, and the method of standard additions can be a viable option to overcome the interferences. At 253.7 nm, non-atomic species in the sample may absorb strongly. Use a background corrector to check for the presence of background absorption. ### **Sample Preparation** Use a method such as US EPA Method 245.5 for the digestion of the fish sample. Alternatively, a microwave digestion method such as US EPA Method 3051A can be used. ### **Standard Preparation** Prepare standards containing 1 $\mu g/L,\,5\,\mu g/L,\,10\,\mu g/I$ and 20 $\mu g/L$ Hg ### **Analysis** Refer to the operation of the vapor generation accessory. # **Vegetable Oil** # Fe (Iron) ### **Typical Analysis** Fe $3.8 \mu g/g$ Ni 17.0 μg/g ### Interferences The method of standard additions is used to compensate for the viscosity and surface tension of the sample matrix. Addition standards are obtained by adding known concentrations of an organometallic standard to replicate sample solutions. An alternative is to add an organic compound with similar physical characteristics, such as Agilent Base mineral oil, to the solution of the organometallic standard. The base mineral oil is added at a level which matches the viscosity of the oil sample. A range of calibration standards can thus be prepared in the usual manner. ### **Sample Preparation** Dissolve 10.0 g of oil sample in Agilent A-solv solvent and dilute to 100 mL with the same solvent. For 3.8 μ g/g Fe, the solution concentration will be approximately 0.4 μ g/mL Fe (or 8 μ g/20 mL aliquot). A blank solution of the solvent is also prepared. ### **Standard Preparation** Prepare an organometallic standard containing approximately 200 μ g/mL Fe. ### **Addition Standards** Take 20 mL aliquots of the sample solution, add 0, 0.05, 0.1 mL of the 200 $\mu g/mL$ Fe standard and dilute to 25 mL with A-solv. ## Ni (Nickel) ### **Typical Analysis** Refer to iron in vegetable oil. ### **Interferences** Refer to iron in vegetable oil. The method of standard additions is used to compensate for the viscosity and surface tension of the sample matrix. ### **Sample Preparation** Refer to iron in vegetable oil. For 17.0 μ g/g Ni, the solution concentration will be approximately 1.8 μ g/mL Ni
(or 36 μ g/20 mL aliquot). ### **Standard Preparation** Prepare an organometallic standard containing approximately $450\ \mu g/mL\ Ni.$ ### **Addition Standards** Take 20 mL aliquots of the sample solution, add 0, 0.1, 0.2 mL of the 450 $\mu g/mL$ Ni standard and dilute to 25 mL with A-solv. # **Fatty Acids** # Al (Aluminium) ### Range $0.1-1.0 \, \mu g/g \, AI$ ### **Typical Analysis** Cu $0.07 \mu g/g$ Mn $0.02 \mu g/g$ Zn $0.4 \mu g/g$ Fe $3.0 \mu g/g$ Ni $0.04 \mu g/g$ Al $0.1 \mu g/g$ ### Interferences Aluminium is partially ionized in the nitrous oxide-acetylene flame. To suppress ionization, add potassium nitrate or chloride solution to give a final concentration of 2000 $\mu g/mL$ potassium in all solutions including the blank. ### **Sample Preparation** Gently heat duplicate 100 g lots of sample in silica dishes until the fatty acid self-ignites. Allow to burn freely with no further application of heat. Wet the carbonaceous residue with 2–3 mL sulfuric acid; heat to drive off excess acid and ignite at 650–700 °C. Dissolve the residue in 10 mL 6 N hydrochloric acid, add 0.1 g potassium as nitrate and dilute to 50 mL. Prepare a reagent blank in the same manner. For 0.1 μ g/g Al, the solution concentration will be approximately 0.2 μ g/mL Al. ### **Standard Preparation** Prepare calibration standards containing 0, 0.2, 0.5, 1.0, 2.0 μ g/mL Al and 2000 μ g/mL potassium in 1 M hydrochloric acid. # Fe (Iron) ### **Typical Analysis** Refer to aluminium in fatty acids. ### **Sample Preparation** Refer to aluminium in fatty acids. For 3.0 μ g/g Fe, the solution concentration will be 6 μ g/mL Fe. ### **Standard Preparation** Prepare calibration standards containing 0, 5, 10, 15 μ g/mL Fe. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain HCl 1 M. # Mn (Manganese) ### **Typical Analysis** Refer to aluminium in fatty acids. ### **Sample Preparation** Refer to aluminium in fatty acids. For 0.5 µg/g Mn, the solution concentration will be approximately 0.04 µg/mL Mn. ### **Standard Preparation** Prepare calibration standards containing 0, 0.05, 0.1 μ g/mL Mn. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: K 2000 μg/mL HCI 1.2 N # **Poultry Food** ## Mn (Manganese) ### **Typical Analysis** Mn 0.01% ### **Sample Preparation** Wet-ash 2.5 g samples with nitric acid and perchloric acid. Dilute to 100 mL to give approximately 2.5 $\mu g/mL$ Mn in solution. ### **Standard Preparation** Prepare calibration standards containing 0, 2.5, 5, 10 μ g/mL Mn, matching the sample in perchloric acid content. # **Orchard Leaves (NBS Standard)** # As (Arsenic) ### **Vapor Generation Technique** At low concentrations, this element can be determined by the vapor generation technique. Details of the appropriate procedures are given in the operation manual supplied with the Agilent vapor generation accessory. ### **Optimum Range** 50–300 ng arsenic i.e., in this preparation 0.005–0.30 μ g/mL in solution or 5–30 μ g/g in the sample. ### Interferences At the 193.7 nm wavelength, non-atomic absorption due to molecular species will necessitate the use of background correction. Chemical interferences can be encountered in the generation of arsine. Oxidizing agents can prevent the reaction entirely. Excess nitric acid in particular must be absent from the test solution. ### **Special Reagents** Ensure that all reagents are as free as possible from arsenic. Hvdrochloric acid — Aristar Grade Sodium borohydride — Laboratory Grade To prepare 5% solution, dissolve 5 g of sodium borohydride in distilled water containing 0.1 g/100 mL of sodium hydroxide. ### **Sample Preparation** Prepare 1 g of sample via microwave digestion and dilute to a final volume of 100mL. ### **Standard Preparation** Prepare calibration solutions containing 0, 0.1, 0.2, 0.3 μ g/mL (mg/L) arsenic so that 1 mL aliquots will contain 0, 100, 200, 300 ng arsenic. ### **Plant Material** ## Ca (Calcium) ### **Typical Analysis** Ca 150 μ g/g K 0.8% Mg 0.36% Na 20 μg/g Cu 0.004% ### Interferences Phosphorous in the plant material will depress the calcium absorbance by 35–50%. This is overcome by the use of a nitrous oxide-acetylene flame. Calcium is partially ionized in this flame. To suppress ionization, add potassium nitrate or chloride to give a final concentration of 2000 $\mu g/mL$ potassium in all solutions including the blank. ### **Sample Preparation** Moisten 1.000 g dried, powdered plant material with a few drops of water. Add 5 mL nitric acid and evaporate to moist salts. Repeat the digestion until no visible charred material is present. Cool, add 5 mL nitric acid and 5 mL perchloric acid. Heat slowly until the solution has cleared, and then evaporate to moist salts. ### WARNING Explosion Hazard Organic perchlorates are explosive. Refer to the warning message on Page 3 of this book. Dissolve the residue in 2 mL nitric acid and dilute to 50 mL with the addition of 2000 μ g/mL potassium. For 150 μ g/g Ca, the solution concentration will be approximately 3 μ g/mL Ca. ### **Standard Preparation** Prepare calibration standards containing 0, 1, 3, 5 μ g/mL Ca. Each solution must contain 2000 μ g/mL added potassium. # Cu (Copper) ### **Typical Analysis** Refer to calcium in plant material. ### **Sample Preparation** Refer to calcium in plant material. Weigh 2.500 g of dried, crushed material into a 250 mL beaker and carry out a controlled wet ashing with nitric and perchloric acids. Dilute to 50 mL. For highest accuracy a blank test on all reagents and glassware should be taken through the entire analysis. For 0.0004% Cu, the solution concentration will be approximately 2 μ g/mL Cu. ### **Standard Preparation** Prepare standards containing 0, 1.0, 2.0, 3.0 μ g/mL Cu in 1% perchloric acid. ## Na (Sodium) ### **Typical Analysis** Refer to calcium in plant material. ### **Sample Preparation** For 20 μ g/g Na in the 1.000 g sample, the solution concentration will be 0.4 μ g/mL Na. ### **Standard Preparation** Prepare calibration standards containing 0, 0.2, 0.4, 0.6 μ g/mL Na, each containing in addition 2000 μ g/mL K to approximately match the sample solution. Fresh standards should be prepared daily. # TI (Thallium) ### Range $0.3 - 30 \, \mu g/g$ ### References 1. Curry, A.S., Read, J.F. and Knott, A.R., Analyst, 94, 746 (1969). ### Reagents Sodium hydroxide (50% w/v): Dissolve 50 g of A.R. sodium hydroxide in distilled water. Cool, dilute to 100 mL with distilled water. Sodium hydroxide 2.5 N: Dissolve 10.00 g of A.R. sodium hydroxide in distilled water. Cool, dilute to 100 mL with distilled water. Sulfuric acid 2.5 NL: Add 7 mL of concentrated sulfuric acid slowly, and with caution, to 80 mL distilled water. Cool, dilute to 100 mL with distilled water. Sodium diethyldithiocarbamate (1% w/v): Dissolve 0.500~g of A.R. sodium diethyldithiocarbamate in distilled water with gentle heating. Cool, dilute to 50~mL with distilled water. NOTE This solution must be freshly prepared for each series of determinations. ### **Sample Preparation** Place 5.000 g of plant material and 20 mL 1:1 nitric-sulfuric acid in a 100 mL Kjeldahl flask. Digest at 120–150 °C to drive off oxides of nitrogen, taking care to prevent charring. If charring does occur, add 5 mL nitric acid, with caution, and continue heating as before (repeat the addition of excess nitric acid if necessary). When the initial reaction has ceased, heat more strongly to sulfur trioxide fumes; and take down to a final volume of about 10 mL. Allow to cool to room temperature, add 50 mL distilled water in small amounts, rotating the flask to prevent localized boiling. ### WARNING The initial additions of water cause a vigorous reaction. Hold the flask with the neck pointing into the fume cupboard, away from the operator or else a serious injury could result. Cool the flask in a container of running water. Add 50% (w/v) sodium hydroxide to neutralize the acid. ### WARNING Add the sodium hydroxide in small increments of 1–3 mL cooling down between each addition to control the violent reaction or else a serious injury could result. When most of the acid has been neutralized, as shown by a slowing down of the reaction, add a few drops of thymol blue indicator and continue the neutralization with the dropwise addition of 50% (w/v) sodium hydroxide. Transfer to a 100 mL volumetric flask and make up to volume with distilled water. Place 20 mL replicate aliquots into 50 mL stoppered test tubes or phials. Using a pH meter, adjust the pH of the solutions to 6–7 with 2.5 N sodium hydroxide and 2.5 N sulfuric acid. Add 2 mL 1% (w/v) sodium diethyldithiocarbamate, stopper the vessel and shake for one minute to allow chelation to occur. Add 3 mL methyl isobutyl ketone and shake in a rapid, even manner for 4–5 minutes. Allow the phases to separate over 30 minutes. Use the clear, organic phase for analysis. For 0.3 μ g/g TI, the organic portion will contain approximately 0.3 μ g/mL TI. ### **Standard Preparation** Prepare calibration standards containing 0, 0.5, 1, 5, 10, 20, 30 μ g/mL TI. Take 20 mL aliquots of the standard solution and adjust the pH, chelate and extract with methyl isobutyl ketone as above (see sample preparation). ## **Soil Extract** # Ca (Calcium) ### Range $50 - 3000 \, \mu g/g$ ### Interferences Inter-element chemical interferences are overcome by using a nitrous oxide-acetylene flame. Calcium is partially ionized in this flame. To suppress ionization add potassium nitrate or chloride to give final concentration of 5000 μ g/mL potassium in all solutions including blank. ### **Sample
Preparation** Accurately weigh 10.00 g finely ground, representative soil sample (note 2) into a 250 mL conical flask. Add 50 mL of 1 N ammonium acetate solution with pH adjusted to 7.0. Shake vigorously for one hour and filter through ammonium acetate washed Whatman 540 paper. Make up the volume to 100 mL with distilled water (solution A for K). Dilute 10 mL of prepared solution to 100 mL with distilled water. Add 500 μ g/mL potassium (solution B for Ca/Mg). For sample with 300 $\mu g/g$ Ca, the dilute solution will contain 3 $\mu g/mL$ Ca. ### References - 1. Ure, A.M. and Berrow, M.L., Analytica Chimica Acta., 52, 247 (1970). - 2. Wilson, T.R., J. Sci. Food and Agric., 17, 344 (1966). # Cu (Copper) ### Range $0-20~\mu g/g~Cu$ ### **Interferences** The copper absorbance is not affected by high amounts (up to 2000 μ g/mL) of Al, Ca, Fe, K, Mg, Na present in the extraction solution[2]. ### **Sample Preparation** Take a representative soil sample according to standard specification (for contamination surveys the taking of 15 cm depth samples is usually recommended). Accurately weigh 10.00 g of dry, finely ground soil into a 100 mL conical flask. Add 30 mL of 0.05 M EDTA previously neutralized to pH 7.0 with purified ammonia. Shake the mixture vigorously for one hour and filter through an EDTA washed Whatman 540 paper. Adjust the filtrate volume to 50 mL with distilled water. For 20 µg/g Cu, the sample solution will contain 4 µg/mL Cu. ### **Standard Preparation** Prepare calibration standards containing 0, 0.5, 1.0, 2.0, 5.0 μ g/mL Cu using 0.05 M EDTA solution for dilutions. The standard solutions must contain the same major matrix elements as the sample solution at approximately the same concentration. ### References - 1. Varju, M.E. and Elek, E., Atomic Absorption Newsl., 10, 128 (1971). - 2. Varju, M.E., Agrokemia Talajtan, 19, 323 (1970). - 3. Ure, A.M, Analytica Chimica Acta., 52, 247 (1970). - 4. Dagnall, R.M., Kirkbright, R.M. and West, T.S., Anal. Chem., 43, 1765 (1970). # K (Potassium) ### Range $0-80 \mu g/g$ ### **Sample Preparation** Refer to procedure recommended for calcium in soil extract. Use original, undiluted solution; for 8 μ g/g K, the solution will contain 0.8 μ g/mL K. ### **Standard Preparation** Make up calibration standards containing 0, 0.2, 0.5, 1.0, 2.0 μ g/mL K in 1 N ammonium acetate. # Mg (Magnesium) ### Range $0-100 \, \mu g/g$ ### Interferences In the air-acetylene flame chemical interferences are overcome by the addition of a releasing agent such as strontium or lanthanum. Analysis in the nitrous oxide-acetylene flame is free from inter-element interference. ### **Sample Preparation** Refer to procedure recommended for calcium. Use dilute solution. For 20 μ g/g Mg, the solution will contain 0.2 μ g/mL Mg. ### **Standard Preparation** Prepare calibration solutions containing 0, 0.1, 0.2, 0.5 $\mu g/mL$ Mg in 1 N ammonium acetate. Each solution should contain 5000 µg/mL potassium. # Mn (Manganese) ### Range $0-200 \mu g/g Mn$. ### **Interferences** No chemical interferences experienced when analyzing extracts containing up to 100 $\mu g/mL$ Al, Ca, Fe, K, Mg, Na and P[2]. ### **Sample Preparation** Refer to preparation of soil extract for copper. Use two-fold dilution of the extract for determination. For a sample containing 30 μ g/g Mn, the concentration of diluted solution will be 3 μ g/mL Mn. ### **Standard Preparation** Prepare calibration solutions containing 0, 1, 2, 5 μg/mL Mn. The standards must be made up in 0.05 M EDTA and should contain major matrix elements present in the sample solutions at approximately the same level. ### References - 1. Ure, A.M. and Berrow, M.L., Analytica Chimica Acta., 52, 247 (1970). - 2. Hossner, L.R. and Ferrara, L.W., Atomic Absorption Newsl., 6, 71 (1967). # Zn (Zinc) ### Range $0.01-5.8 \, \mu g/g$ ### **Sample Preparation** Refer to preparation of soil extract for copper analysis. For 5.8 $\mu g/g$ Zn in the sample, solution will contain 1.16 $\mu g/mL$ Zn. ### **Standard Preparation** Prepare standards containing 0, 0.5, 1.0, 2.0 $\mu g/mL$ Zn. Use 0.05 M EDTA solution in dilution of the standards. Concentrations of elements, other than zinc, present in the sample solution should be matched in the standards. # **Chemical** # **Sulfuric Acid** # As (Arsenic) ### Range 1-10 µg/mL As ### **Typical Analysis** H₂SO₄ 97.0% As 0.001% ### Interferences At 193.7 nm, non-atomic species in the flame absorb strongly. Use a background corrector to check for the presence of background absorption. ### **Sample Preparation** Cautiously add 10 mL sulfuric acid sample to 15 mL water, using a pipette with filler bulb. Cool, dilute to 25 mL. ### **Standard Preparation** Prepare a 10 µg/mL As solution. Repeat the above sample preparation with the addition of 5 mL of $10 \mu\text{g/mL}$ As before dilution to 25 mL. This procedure gives a standard addition of 2 μ g/mL As in the sulfuric acid. Further additions can be made in a similar manner to give standard addition solutions of 4 µg/mL and 6 µg/mL. # **Organometallic Compounds** # As (Arsenic) ### **Typical Analysis** As34.0% C, H and O remainder ### Interferences At 193.7 nm wavelength, non-atomic species in the flame absorb strongly. Use a background corrector to check for the presence of background absorption. ### **Sample Preparation** Dissolve 0.100 g of sample in 20 mL distilled water and 5 mL ethanol. Make up to 100 mL with distilled water. Take 10 mL of prepared solution, add 5 mL ethanol and dilute to 100 mL with distilled water. For 34.0% As, the dilute solution will contain approximately 35 µg/mL As. ### **Standard Preparation** Prepare calibration standards containing 0, 20, 30, 40, 50 μ g/mL As in 5% v/v ethanol. # Si (Silicon) ### **Typical Analysis** Si 11.0% S, C and H remainder ### Interferences The method of standard additions is used to compensate for the sample matrix. ### **Sample Preparation** Dissolve 0.200~g of sample in methyl isobutyl ketone and make up to 100~mL with this solvent. For 11.0% Si, the sample concentration will be approximately 220 μ g/mL Si ### **Standard Preparation** Prepare a solution containing 450 $\mu g/mL$ Si using an Agilent single element oil standard. ### Additions standards: Take 20 mL aliquots of the sample solution, add 0, 5, 10, 20 mL of the 450 μ g/mL silicon standard and make up to 100 mL with methyl isobutyl ketone. The addition standards will contain 0, 22.5, 45, 90 $\mu g/mL$ added silicon. ## Ti (Titanium) ### **Typical Analysis** Ti 38.0% S, C and H remainder ### Interferences The method of standard additions is used to compensate for the sample matrix which depresses the titanium absorbance. ### **Sample Preparation** Dissolve 0.300 g sample in diisobutyl ketone (DIBK). Make up to 250 mL with this solvent. For 38% Ti, the sample concentration will be approximately 460 $\mu g/mL$ Ti. ### **Standard Preparation** Dissolve 1.8662 g of A.R. potassium titanyloxylate (13.53% Ti) in distilled water. Make up to 250 mL. The solution will contain 1000 μ g/mL Ti. ### **Additions standards:** Take 25 mL aliquots of the sample solution, add 0, 5, 10, 20 mL of the 1000 μ g/mL Ti standard and make up to 100 mL with distilled water. The addition standards will contain 0, 50, 100, 200 $\mu g/mL$ added titanium. Prepare a blank solution by diluting 25 mL DIBK to 100 mL with distilled water. # Organometallic 'Soaps' ## Co (Cobalt) ### Range 5-18% Co ### **Typical Analysis** 12.5% Co ### **Sample Preparation** Dissolve 2.000 g of sample in Agilent's A-Solv solvent and make up to 100 mL with the same solvent. Dilute 1 mL of the prepared solution to 100 mL with A-solv solvent. For 12.5% Co, the dilute solution will contain approximately 25 µg/mL Co. ### **Standard Preparation** Prepare calibration standards containing 0, 10, 20, 30, 40 $\mu g/mL$ Co using Agilent single element oil standards and diluting with A-solv solvent. # Cu (Copper) ### Range 4-12% Cu ### **Typical Analysis** 6.9% Cu ### **Sample Preparation** Dissolve 2.000 g of sample in metal-free Agilent A-Solv solvent and make up to 100 mL with the same solvent. Dilute 1 mL of the prepared solution to 100 mL with A-Solv solvent. For 6.9% Cu, the dilute solution will contain approximately 14 µg/mL Cu. ### **Standard Preparation** Prepare calibration standards containing 0, 10, 15, 20, 25 μ g/mL Cu by using Agilent Single element oil standards and diluting with A-solv solvent. # Pb (Lead) ### Range 15-33% Pb ### **Typical Analysis** 21.5% Pb ### **Sample Preparation** Dissolve 2.000 g of sample in Agilent A-Solv ; make up to 100 mL with the same solvent. Dilute 1 mL of the prepared solution to 200 mL with Agilent A-Solv . For 21.5% Pb, the dilute solution will contain approximately 22 μ g/mL Pb. ### **Standard Preparation** Prepare calibration standards containing 0, 10, 15, 20, 25, 35 μ g/mL Pb by dilution of Agilent single element oil standard with A-solv solvent. # **Organometallic Salts** # Cd (Cadmium) ### Range 0.5-15% Cd ### **Sample Preparation** Weigh out 0.500 g of the organic compound, dissolve it in xylene and dilute to 100 mL with xylene. Dilute 2 mL of this solution to 100 mL with xylene. For 15% Cd, the final solution concentration will be approximately 15 μ g/mL Cd. ### **Standard Preparation** Use Agilent single element oil standards to prepare standard solutions containing 0, 5, 10, 20 μ g/mL Cd. # Pb (Lead) ### Range 10-20% Pb ### **Sample Preparation** Refer to cadmium in organometallic salts. For analysis, dilute 2 mL of the prepared solution to 100 mL with xylene. For 20.0% Pb, the dilute solution will contain approximately 20 μ g/mL Pb. ### **Standard Preparation** Dissolve 0.1365 g of lead cyclohexanebutyrate (36.61% Pb) in 3 mL xylene and 5 mL $\,$ 2-ethylhexanoic acid with gentle heating. Cool, dilute to 100 mL with xylene to give a solution containing 500 μ g/mL Pb. Prepare calibration
standards containing 0, 10, 15, 20, 25 μ g/mL Pb by dilution of the 500 μ g/mL Pb solution with xylene. # Sn (Tin) ### Range Suitable for tin determination in hexanoic and octanoic acid metal salts (approximately 20% tin). ### **Sample Preparation** See cadmium in organometallic salts. Dilute the original sample solution 1:10 with xylene. For 20% Sn in the sample, this is 100 $\mu g/mL$ Sn in solution. ### **Standard Preparation** Use Agilent single element oil standards to prepare standard solutions containing 50, 100, 150, 200, 300 $\mu g/mL$ Sn. ## Zn (Zinc) ### Range Suitable for hexanoic and octanoic acid salts and other compounds soluble in xylene or other organic solvents. ### **Sample Preparation** Dissolve 0.500 g sample in xylene and dilute with xylene to 100 mL. Dilute 1 mL to 100 mL with xylene. For 10% Zn in a 0.500 g sample this is $5 \mu g/mL$ Zn in solution. ### **Standard Preparation** Prepare calibration standards of 0, 2.5, 5, 7.5 µg/mL Zn in xylene using Agilent single element oil standards. # **Organic Stabilizers** ## Ba (Barium) ### Range 1-10% Ba ### **Typical Analysis** 8.2% Ba ### Interferences Molecular species in the flame may absorb strongly. Molecular absorption is most common at wavelengths below about 350 nm. To check for non-atomic absorption at the barium wavelength use the following procedure. Since the deuterium lamp is not effective at the 553.6 nm line, an alternative source may be used, i.e., a molybdenum lamp at the nearby line of 553.3 nm can act as a continuum source to measure the non-atomic absorbance. The non-atomic signal is then subtracted from the apparent absorbance of the sample and standard solutions, as measured at the normal 553.6 nm barium line. Barium is partially ionized in the nitrous oxide-acetylene flame. To suppress ionization add a sodium organometallic salt to give a final concentration of 1000 µg/mL sodium in all solutions. ### **Sample Preparation** Dissolve 0.100 g of sample in 5 mL Agilent A-Solv solvent. Add organometalic sodium to give a final concentration of 1000 µg/mL sodium. Dilute to 100 mL with A-solv. For 8.2% Ba, the sample concentration will be approximately 80 $\mu g/mL$ Ba. ### **Standard Preparation** Prepare calibration standards containing 0, 25, 50, 75, 100 μ g/mL Ba, with 1000 μ g/mL Na in each solution. ### **Instrument Parameters** Refer to barium standard conditions. Wavelength 553.6 nm Fuel acetylene Support nitrous oxide # Cd (Cadmium) ### Range 0.5-5% Cd ### **Typical Analysis** 0.95% Cd ### **Sample Preparation** Dissolve 0.100 g of sample in 5 mL Agilent A-solv solvent. Cool, dilute to 100 mL with A-solv. Dilute 2 mL of the prepared solution to 100 mL with A-solv. For 0.95% Cd, the dilute solution will contain approximately 0.2 μ g/mL Cd. ### **Standard Preparation** Prepare calibration standards containing 0, 0.1, 0.2, 0.5, 1.0 μ g/mL Cd using Agilent oil standards. # Zn (Zinc) ### Range 0.5-4% Zn ### **Typical Analysis** 2.7% Zn ### **Sample Preparation** Refer to cadmium in organic stabilizers. Use the dilute solution; for 2.7% Zn, the dilute solution will contain approximately $0.5 \mu g/mL$ Zn. ### **Standard Preparation** Prepare calibration standards containing 0, 0.2, 0.4, 0.6, 0.8 $\mu g/mL\ Zn.$ # **Industrial** # **Carbon Deposits** # Fe (Iron) ### Range $100-700 \mu g/g Fe$ ### **Sample Preparation** Digest 1.000 g of sample with 10 mL sulfuric and 5 mL nitric acid in a covered beaker. Boil until the solution clears and sulfur trioxide fumes are present. Remove the cover and fume down to an approximate volume of 2 mL. If carbonaceous matter re-precipitates, add another 1 mL nitric acid and refume. Cool, transfer to a 25 mL volumetric flask and make up to volume with distilled water. Prepare an analytical solution by further diluting 2 mL of the sample solution to 10 mL. For 627 μ g/g Fe, the analytical solution will contain approximately 5 μ g/mL Fe. ### **Standard Preparation** Prepare calibration standards containing 0, 2, 4, 6, 8 μ g/mL Fe in 2% sulfuric acid. # V (Vanadium) ### Range $30-50 \, \mu g/g \, V$ ### **Sample Preparation** Refer to iron in carbon deposit. Use the original solution for analysis. For 43 μ g/g V, the solution concentration will be approximately 1.7 μ g/mL V in 10% sulfuric acid. ### **Standard Preparation** Prepare calibration standards containing 0, 1.0, 1.5, 2.0, 2.5 μ g/mL V in 10% sulfuric acid. # Cement # Al (Aluminium) ### Range Suitable up to 3% Al₃O₃ ### **Typical Analysis** SiO2 25% Fe_2O_3 3% CaO 64% MgO 1% Na_2O 0.2% K_2O 0.3% AI_2O_3 3% ### **Interferences** Sodium and calcium are ionized in the nitrous oxideacetylene flame thus producing enhancement of aluminium absorbance. Silicon depresses aluminium absorbance by the formation of a refractory complex. These effects are overcome by using standards containing these and other major matrix elements at the same concentration as the sample. ### **Sample Preparation** Fuse 0.500 g sample with 2 g NaOH or Na_2O_2 in either a platinum or zirconium crucible, (Note 1). Cool the melt and dissolve in 100 mL warm water. Acidify by the slow addition of 15 mL hydrochloric acid. Add 5 mL of 10 volume hydrogen peroxide and warm gently to a maximum temperature of $60\,^{\circ}$ C. Dilute to 250 mL. For 3% ${\rm Al_2O_3}$, the solution concentration will be approximately 30 ${\rm \mu g/mL}$ Al. Note 1: If a platinum crucible is used, do not raise the temperature above a dull red heat. Fusion for about 3 minutes is adequate. ### **Standard Preparation** Prepare calibration standards containing 0, 20, 30, 40 μ g/mL Al. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above, the standards would contain: | Са | 1000 μg/mL | |------|--------------| | Mg | 150 μg/mL | | Fe | 40 μg/mL | | Si | 230 μg/mL | | NaOH | 0.8 g/100 mL | | HCI | 6 mL/100 mL | # Ca (Calcium) ### **Typical Analysis** Refer to aluminium in cement. ### **Interferences** At normal sample concentrations, silicon and aluminium depress the calcium absorbance by 50–70% and iron by 5–7%. These effects are overcome by using the nitrous oxide-acetylene flame. The partial ionization of calcium in this flame is overcome by the excess sodium used in dissolution of the sample. ### **Sample Preparation** Refer to aluminium in cement. Dilute a 25 mL aliquot of the sample solution to 50 mL. For 64% CaO, the final solution concentration will be approximately 450 μ g/mL Ca. ### **Standard Preparation** Prepare calibration standards containing 0, 250, 500, 750 μ g/mL Ca. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above, the standards would contain: | Al | 15 μg/mL | |------|--------------| | Mg | 75 μg/mL | | Fe | 20 μg/mL | | Si | 115 μg/mL | | NaOH | 0.4 g/100 mL | | HCI | 3 mL/100 mL | ## Fe (Iron) ### **Typical Analysis** Refer to aluminium in cement. ### Interferences Interference can be expected from the high matrix levels present. The use of a nitrous oxide-acetylene flame is recommended to overcome this. ### **Sample Preparation** Refer to aluminium in cement. For 3% Fe₂O₃, the solution concentration will be approximately 40 μ g/mL Fe. ### **Standard Preparation** Prepare calibration standards containing 0, 20, 40, 60 μ g/mL Fe. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | NaOH (or Na ₂ O ₂) | 0.8 g/100 mL | |---|--------------| | HCI | 6 mL/100 mL | | SiO ₂ | 500 μg/mL | | CaO | 1280 μg/mL | | Al ₂ O ₃ | 60 μg/mL | # Mg (Magnesium) ### **Typical Analysis** Refer to aluminium in cement. ### Interferences Chemical interference from aluminium and silicon is overcome by the use of the nitrous oxide-acetylene flame. ### **Sample Preparation** Refer to aluminium in cement. For 1% MgO, the solution concentration will be approximately 12 µg/mL Mg. ### **Standard Preparation** Prepare calibration standards containing 0, 15, 20, 25 μ g/mL Mg. The standard solutions must contain the same reagents and major matrix elements at approximately the same concentration as the sample solutions. For example, in the typical case above the standards would contain: | Al | 30 μg/mL | |------|---------------| | Ca | 900 μg/mL | | Fe | 40 μg/mL | | Si | 230 μg/mL | | HCI | 0.6 mL/100 mL | | NaOH | 0.08 g/100 mL | # Ni (Nickel) ### **Typical Analysis** Ni $100 \,\mu g/g$ Cr $75 \,\mu g/g$ ### **Sample Preparation** Digest duplicate 1.000 g samples, dried and finely powdered, with 35 mL 1:1 hydrochloric acid for 10 minutes. Cool and transfer to 100 mL volumetric flasks (filtering is not necessary). To one flask add 5 mL 10 μ g/mL Ni solution, and dilute both solutions to 100 mL. ### **Standard Preparation** Standard addition is used so that matrix matching is unnecessary. # Si (Silicon) ### **Typical Analysis** Refer to aluminium in cement. ### **Sample Preparation** Refer to aluminium in cement. For 25% SiO $_{\!_{2}}$, the solution concentration will be approximately 230 $\mu g/mL$ Si. ### **Standard Preparation** Prepare calibration standards containing 0, 200, 250, 300 $\mu g/$ mL Si. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Na | 4500 μg/mL | |-----|-------------| | Ca | 1000 μg/mL | | Mg | 150 μg/mL | | Fe | 40 μg/mL | | Al | 30 μg/mL | | HCI | 6 mL/100 mL | # **Ceramic Surfaces (Glazed)** ## Cd (Cadmium) ### **Sample Preparation** Refer to procedure recommended for lead
extracted from glazed ceramic surfaces. ### **Standard Preparation** Prepare calibration standards containing 0, 0.2, 0.5, 1.0, 2.0 $\mu g/mL$ Cd in 4% acetic acid. ## Pb (Lead) ### **Sample Preparation** Wash the products submitted for testing with a non-ionic detergent, rinse with tap water and follow by distilled water. Fill each dried item with 4% acetic acid and allow to stand at room temperature (20 °C) for 24 hours. Record the volume of the solvent and prevent evaporation by covering with a watch glass. ### **Standard Preparation** Prepare calibration standards containing 0, 2, 5, 10, 20 μ g/mL Pb in 4% acetic acid. # Clay # Ca (Calcium) ### **Typical sample** Flint Clay SiO_2 43.6% AI_2O_3 38.8%, MgO 0.15% CaO 0.10% SrO 0.18% ### Interferences To overcome the inter-element interferences the nitrous oxide-acetylene flame was used. Addition of potassium $(2000-5000 \ \mu g/mL)$ prevents the loss of sensitivity due to ionization. ### **Sample Preparation** Place 0.2000 g of dried sample (2 hours at 140 °C) in a PTFE-lined pressure container (1). Add one drop each of hydrochloric and nitric acid, and then slowly add 4 mL of hydrofluoric acid. Seal the container and place in an oven at 125 °C for two hours. Cool, open the container and transfer the solution to a platinum dish. Add 5 mL of hydrofluoric acid and 5 mL of perchloric acid, heat to white fumes of perchloric acid. Then cool and add 2 mL of hydrochloric acid. Warm the sample to dissolve the salts. Transfer to a plastic 50 mL volumetric flask, add potassium chloride to give a final concentration of 5000 μ g/mL K and make up to volume with distilled water. For the sample with 0.1% CaO, the solution will contain 3 μ g/mL Ca. Wherever possible plastic laboratory ware should be substituted for normal glass. The prepared solution should be stored in a plastic bottle. ### **Standard Preparation** Prepare calibration standards containing 0, 1, 2, 4, 5 $\mu g/mL$ Ca. The standard solutions must contain the same reagents at approximately the same concentrations. For example, in the case above, the standards should contain: | Al ₂ O ₂ | 310 μg/mL | |--------------------------------|------------| | K | 5000 μg/mL | | HCI | 2 mL/50 mL | | HCIO ₄ | 5 mL/50 mL | ### **References** - 1. Bernas, B., Anal. Chem., 40, 1682, (1968). - 2. 'Methods for Analysis of NBS Clay Standards', Special Publication 260-37, June (1972). # Mg (Magnesium) ### **Typical Sample** | Flint Clay | SiO2 | 43.6% | ${\rm Al_2O_3}$ | 38.8% | |------------|------|-------|-----------------|-------| | | Mg0 | 0.15% | Ca0 | 0.10% | SrO 0.18% ### Interferences Chemical interference from aluminium and silicon is overcome by the use of the nitrous oxide-acetylene flame. ### **Sample Preparation** Refer to the procedure recommended for calcium in clay. For the sample with 0.15% MgO, the solution will contain 3.68 $\mu g/mL$ Mg. ### **Standard Preparation** Prepare calibration standards 0, 2, 5, 10 μ g/mL Mg. The standard solution must contain the same reagents and major matrix elements of approximately the same concentrations as the sample solutions. | SiO ₂ | 350 μg/mL | |--------------------------------|------------| | Al ₂ O ₃ | 310 μg/mL | | K | 5000 μg/mL | | HCI | 2 mL/50 mL | | HCIO ₄ | 5 mL/50 mL | # Sr (Strontium) ### **Typical Range** | Flint Clay | SiO ₂ 43.6% | Al ₂ O ₃ 38.8% | |------------|------------------------|--------------------------------------| | • | MgÓ 0.15% | Ca ² O ³ 0.10% | | | SrO 0.18% | | ### Interferences Chemical interference from aluminium and silicon is overcome by the use of the nitrous oxide-acetylene flame. The ionization of strontium is suppressed by addition of potassium nitrate or chloride. ### **Sample Preparation** Refer to the procedure recommended for calcium in clay. For the sample containing 0.18% SrO, the solution will contain 7.9 μ g/mL Sr. ### **Standard Preparation** Prepare calibration standards containing 0, 2, 5, 10 μ g/mL Sr. Ensure that all standard solutions contain the same reagents and major matrix elements at approximately the same concentrations as the sample solutions. For example, in a typical case above, standards would contain: | SiO ₂ | 350 μg/mL | |--------------------------------|------------| | Al ₂ O ₃ | 310 µg/mL | | K | 5000 μg/mL | | HCI | 2 mL/50 mL | | HCIO ₄ | 5 mL/50 mL | # **Electroplating Solutions** # Cu (Copper) ### **Typical Analysis** Nickel solution (Watts type) Nickel sulfate (NiSO₄.6H₂O) 30.0% w/w Nickel chloride (NiCl₂.6H₂O) 5.2% Boric acid 4.5% ### **Interferences** Water The method of standard additions is used to compensate for differences in sample viscosity and matrix effects. 60.3% ### **Sample Preparation** Use the sample directly. ### **Standard Preparation** Make up 50 μ g/mL Cu standard by taking 5 mL of 1000 μ g/mL Cu standard and diluting to 100 mL with distilled water. Pipette 10 mL aliquots of the sample solution into four 50 mL volumetric flasks. Add 0, 1, 2, 5 mL of 50 μ g/mL Cu standard and make up to volume with distilled water. The addition standard will contain 0, 1, 2, 5 μ g/mL added copper, respectively. # Fe (Iron) ### **Typical Analysis** Nickel solution (Watts type) $\begin{array}{lll} \mbox{Nickel sulfate (NiSO}_4.6\mbox{H}_2\mbox{O}) & 30.0\%\mbox{ w/w} \\ \mbox{Nickel chloride (NiCl}_2.6\mbox{H}_2\mbox{O}) & 5.2\% \\ \mbox{Boric acid} & 4.5\% \\ \mbox{Water} & 60.3\% \end{array}$ ### Interferences Matrix interferences are minimized by application of the standard addition method. ### **Sample Preparation** Use the sample directly. ### **Standard Preparation** Prepare 50 μ g/mL Fe standard by diluting 5 mL of 1000 μ g/mL Fe standard to 100 mL with distilled water. Pipette 10 mL aliquots of the sample into four 50 mL volumetric flasks and add 0, 1, 2, 5 mL of 50 $\mu g/mL$ Fe standard. Make up to volume with distilled water. The prepared standards will contain 0, 1, 2, 5 $\mu g/mL$ added iron. # Pb (Lead) ### **Typical Analysis** Nickel solution (Watts type) same as for copper in electroplating solutions. ### Interferences Method of standard additions is used to compensate for the sample matrix. ### **Sample Preparation** Use the sample directly. ### **Standard Preparation** Dilute 5 mL of 1000 μ g/mL Pb solution to 100 mL to obtain 50 μ g/mL Pb standard. ### **Addition Standards** Pipette 10 mL aliquots of the sample solution into five 50 mL volumetric flasks. Add 0, 1, 2, 5, 10 mL of 50 $\mu g/mL$ Pb standard and make up to volume with distilled water. The prepared solutions will contain 0, 1, 2, 5, 10 $\mu g/mL$ added lead. # Zn (Zinc) ### **Typical Analysis** Nickel solution (Watts type) same as for copper in electroplating solutions. ### **Interferences** Interferences due to matrix effect are minimized by application of the standard addition method. ### **Sample Preparation** Prepare 10 μ g/mL Zn standard by diluting 1 mL of 1000 μ g/mL Zn standard to 100 mL. ### **Addition Standards** Pipette 10 mL aliquots of the solution into five 50 mL volumetric flasks. Add 0, 1, 2, 5, 10 mL of 10 μ g/mL Zn standard and make up to volume with distilled water. The prepared standards will contain 0, 0.2, 0.4, 1.0, 2.0 μ g/mL. ### Talc # As (Arsenic) ### **Vapor Generation Technique** At low concentrations, this element can be determined by the vapor generation technique. Details of the appropriate procedures are given in the operation manual supplied with the Agilent vapor generation accessory. ### **Standard Preparation** Refer to arsenic in water. ### Range 50-500 ng arsenic $0.1-1.0~\mu g/g$ arsenic under the conditions of the given method. The analytical range can be varied by using different sample weights. ### **Typical Analysis** 0.16 µg/g arsenic in cosmetic grade talc. ### Interferences Chemical interferences can be encountered in the generation of arsine. Oxidizing agents can prevent the reaction entirely. Excess nitric acid in particular must be absent from the test solution. Metals such as copper, which form a precipitate with potassium iodide, cannot be tolerated in large excess. ### **Sample Preparation** Suspend 2.500 g of finely ground talc sample in 50 mL hydrochloric-sulfuric acid mixture. Add excess potassium iodide to reduce the arsenic (approximately 0.5 g). Stir well and add 20% stannous chloride solution dropwise to clear the precipitated iodine. Stand for 45 minutes with frequent stirring; if necessary, repeat the addition of 20% stannous chloride to ensure complete reaction. Filter through a fine paper (Whatman No. 542) to remove the suspended talc; wash with hydrochloric-sulfuric acid (50% v/v). Using normal filtration techniques, recycle the filtrate until it is clear. Transfer to a 100 mL volumetric flask and make up to volume with hydrochloric-sulfuric acid to give a solution with 50% v/v acid concentration. Take 20 mL aliquots of the prepared solution for analysis. For 0.16 µg/g arsenic the analytical solution will contain approximately 80 ng arsenic. ### **Standard Preparation** Prepare a standard solution containing 0.5 $\mu g/mL$ arsenic in 2% hydrochloric acid. Prepare calibration standards containing 0, 50, 100, 200, 300, 400, 500 ng arsenic for 20 mL aliquot in 50% v/v acid. Transfer 0, 0.5, 1, 2, 3, 4, 5 mL aliquots of the 0.5 μ g/mL standard into 100 mL volumetric flasks and make up to volume with hydrochloric-sulfuric acid mixture. ### **Notes:** - All determinations are carried out in an acid matrix of 40% hydrochloric acid and 10% sulfuric acid to give a total acid concentration of 50% (v/v). - At the 193.7 nm wavelength, non-atomic absorption due to molecular species in the sample may necessitate the use of background correction. ## **Calcite** # As (Arsenic) ### **Vapor Generation Technique** At low concentrations, this element can be determined by the vapor generation technique. Details of the appropriate procedures are given in the operation manual supplied with the Agilent
vapor generation accessory. ### Range 50-500 ng arsenic. 0.2-4.0 µg/g arsenic, depending upon analytical conditions. ### **Typical Analysis** 0.25 µg/g arsenic in pharmaceutical grade calcite. ### **Interferences** Refer to arsenic in talc. ### **Sample Preparation** Dissolve 1.250 g of calcite in a minimum volume of concentrated hydrochloric acid. Add 20 mL hydrochloric-sulfuric acid (50% v/v). Add potassium iodide in excess (approximately 0.5 g) to reduce the arsenic. Stir will and add 20% stannous chloride solution dropwise to clear the liberated iodine. Allow to stand for 45 minutes with frequent stirring; if necessary add a few more drops of 20% stannous chloride to ensure that excess reductant is present. Transfer to a 100 mL volumetric flask and make up to volume with hydrochloric-sulfuric acid (50% v/v). Take 20 mL aliquots of the prepared solution for the determination of arsenic in the 0.2–2.0 µg/g range. To extend the linear analytical range to 0.4–4.0 $\mu g/g$ arsenic; dilute the prepared solution 1:1 with hydrochloric-sulfuric acid and take 20 mL aliquots of the diluted solution. ### **Standard Preparation** Prepare a standard containing 0.5 μ g/mL arsenic in 2% hydrochloric acid. Prepare calibration standards containing 0, 50, 100, 200, 300, 400, 500 ng arsenic in 20 mL aliquots with a total acid concentration of 50% v/v (refer to arsenic in talc). # **Kaolin** ### As (Arsenic) ### **Vapor Generation Technique** At low concentrations, this element can be determined by the vapor generation technique. Details of the appropriate procedures are given in the operation manual supplied with the Agilent vapor generation accessory. ### Range 50-500 ng arsenic 0.2-2.0 µg/g arsenic for pharmaceutical grade kaolin 2.0-20.0 µg/g arsenic for industrial high grade kaolin ### **Interferences** Refer to arsenic in talc. ### **Sample Preparation** 0.2–2.0 μg/g arsenic range Suspend 1.250 g of finely ground kaolin in 20 mL hydrochloric-sulfuric acid mixture. Add potassium iodide in excess (approximately 0.5 g) to reduce the arsenic. Stir well and add 20% stannous chloride dropwise to clear the liberated iodine. Allow to stand for 45 minutes with frequent stirring; if necessary, add a few more drops of 20% stannous chloride to ensure that excess reductant is present. Transfer to a 100 mL volumetric flask and make up to volume with hydrochloric-sulfuric acid (50% $\rm v/v$). Take 20 mL aliquots of the prepared solution for the determination of arsenic in the $0.2-2.0 \mu g/g$ range. 2.0–20.0 μg/g arsenic range Use 0.1250 g of sample and prepare a solution according to the above procedure. Take 20 mL aliquots of the prepared solution for the determination of arsenic in the 2.0-20.0 $\mu g/g$ range. ### **Standard Preparation** Prepare a standard containing 0.5 μ g/mL arsenic in 2% hydrochloric acid. Prepare calibration standards containing 0, 50, 100, 200, 300, 400, 500 ng arsenic in 20 mL aliquots with a total acid concentration of 50% v/v (refer to arsenic in talc). ### **Minerals** # **Fluorspar** # Ba (Barium) **Typical Analysis** CaF₂ 98% Ba 0.04% ### **Interferences** Fluoride must be removed from the sample during the fuming step to prevent precipitation of insoluble barium fluoride. ### **Sample Preparation** Dissolve 0.500 g of fluorspar in 3 mL hydrochloric acid and fume to dryness twice. Cool, add 2 mL perchloric acid and heat to fumes. Cool, add 2 mL hydrofluoric acid and heat to fumes of perchloric acid appear. Cool, dissolve in water and dilute to 100 mL with the addition of 10 mL of 20000 $\mu g/mL$ potassium as ionization suppressant. For 0.04% Ba, the solution concentration will be approximately $2 \mu g/mL$ Ba. ### **Standard Preparation** Prepare calibration standards containing 0, 1, 2, 3 μ g/mL Ba. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: Ca $2500 \, \mu g/mL$ K $2000 \, \mu g/mL$ # **Gypsum** # Ca (Calcium) ### **Typical Analysis** Ca 25% SO₄ 56% ### Interferences Sulfate ion depresses the calcium absorbance by 30%. This effect is overcome readily in a nitrous oxide-acetylene flame. Calcium is partially ionized in this flame. To suppress ionization, add potassium nitrate or chloride to give a final concentration of 2000 $\mu g/mL$ potassium in all solutions including the blank. ### **Sample Preparation** Dissolve 1.000 g sample in 20 mL of 1:1 hydrochloric acid. Cool and dilute to 100 mL. Dilute a 1 mL aliquot of the sample solution to 100 mL with the addition of 2000 $\mu g/mL$ potassium. For 25% Ca, the final solution concentration will be approximately 25 μ g/mL Ca. ### **Standard Preparation** Prepare calibration standards containing 0, 20, 25, 30 µg/mL Ca. Each solution must contain 2000 µg/mL potassium. # **Kyanite** # AI (Aluminium) ### Range 15-25% AI ### **Typical Analysis** Al 24% Si 22% Fe 0.1% ### **Interferences** Silicon depresses aluminium absorbance by the formation of a refractory complex. This is overcome by using standards containing silicon at the same concentration as the sample. ### **Sample Preparation** Fuse 1.000 g finely ground ore with 2.5 g NaOH pellets in a zirconium crucible Cool the melt and dissolve in warm water. Add 20 mL of 1:1 hydrochloric acid and heat gently with the slow addition of 30 volume hydrogen peroxide until the solution clears. To prevent hydrolysis of the silicon do not heat above 60 °C. Dilute to 500 mL. For 24% Al the solution concentration will be approximately 480 ug/mL Al. ### **Standard Preparation** Prepare calibration standards containing 0, 300, 400, 500 μ g/mL Al. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above, the standards would contain: | Si | 450 μg/mL | |-----------|-------------| | Na | 3000 μg/mL | | HCI (1:1) | 4 mL/100 mL | ## Fe (Iron) ### **Typical Analysis** Refer to aluminium in kyanite ore. #### Interferences The high levels of aluminium and silicon have been found to cause a slight depression of iron absorbance and it is necessary to match standards and samples for matrix levels. #### **Sample Preparation** Refer to aluminium in kyanite ore. For 0.1% Fe, the solution concentration will be approximately 2 μ g/mL Fe. ### **Standard Preparation** Prepare calibration standards containing 0, 1, 2, 3 μ g/mL Fe. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Al | 480 μg/mL | |-----------|--------------| | Si | 440 μg/mL | | NaOH | 0.5 g/100 mL | | HCI (1:1) | 4 mL/100 mL | ## Si (Silicon) ### **Typical Analysis** Refer to aluminium in kyanite ore. #### **Sample Preparation** Refer to aluminium in kyanite ore. For 22% Si, the solution concentration will be approximately 440 µg/mL Si. #### **Standard Preparation** Prepare calibration standards containing 0, 200, 400, 600 μ g/mL Si. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Na | 3000 μg/mL | |-----------|-------------| | Al | 500 μg/mL | | HCI (1:1) | 4 mL/100 mL | ## **Petalite** ## Li (Lithium) ## **Typical Analysis** Li20 4% SiO₂ 75% AI₂O₃ 15% ## **Sample Preparation** Fuse 0.5 g finely ground sample with 2 g potassium hydroxide in a zirconium crucible at dull red heat for 15 minutes, and allow to cool. Dissolve the cake in 200 mL water, 10 mL hydrochloric acid and 5 mL 10 volume hydrogen peroxide. Dilute to 500 mL. For 4% Li₂O in sample, solution concentration will be approximately 20 µg/mL. #### **Standard Preparation** Prepare calibration standards containing 0, 10, 20, 30 μ g/mL Li. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | КОН | 2 g/500 mL | |--------------------------------|----------------| | HCI | 10 mL/500 mL | | SiO ₂ | 0.375 g/500 mL | | Al ₂ O ₃ | 0.075 g/500 mL | fused and treated as for the sample. ## **Quartz** ## Ti (Titanium) ## **Typical Analysis** Ti 0.014% #### Interferences The method of standard additions is used to compensate for matrix effects. #### **Sample Preparation** Digest replicate 2 g samples with 10 mL of hydrofluoric acid and 5 mL nitric acid in PTFE. beakers. Evaporate to approximately 2 mL to remove excess silicon. Cool, add 4 mL hydrofluoric acid and 1 g boric acid. Transfer to 50 mL volumetric flasks. To one of the solutions add 2 mL of 100 μ g/mL Ti standard and make up to volume with distilled water to give an addition standard containing 4 μ g/mL Ti. Further additions con be made in a similar manner to give standard addition solutions containing 8 μ g/mL and 12 μ g/mL Ti. For 0.014% Ti, the original sample solution will contain approximately 6 μ g/mL Ti. #### **Standard Preparation** Prepare a standard solution containing 100 µg/mL Ti. # **Beryllium** ## Be (Beryllium) ### **Typical Analysis** BeO 14% Al₂O₃ 19% SiO₂ 67% #### Interferences Suppression of absorbance by matrix components may be observed and the effect minimized by matching samples and standards. #### **Sample Preparation** Fuse 0.25 g of finely powdered ore with 1 g of potassium bifluoride in a nickel crucible. Disperse the cooled melt in 150 mL sulfuric acid and fume. Dilute to 100 mL in a plastic volumetric flask. Dilute 2 mL of sample solution to 100 mL. For 14% BeO, the final solution concentration will be approximately 4 μ g/mL Be. ## **Standard Preparation** Prepare calibration standards containing 0,
2, 4, 6 μ g/mL Be. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Si | 15 μg/mL | |----|----------| | Al | 5 μg/mL | ## **Lead Concentrate** # Cu (Copper) ## **Typical Analysis** Cu 5% Pb 55% Zn 20% #### **Sample Preparation** Dissolve 0.100 g of ore in 5 mL of perchloric acid. Heat to perchloric fumes to remove sulfur. After the sulfur has evaporated, cool the solution and dilute to 100 mL. Dilute 10 mL of this solution to 100 mL. For 5% Cu, the solution concentration will be approximately 5 μ g/mL Cu. ### **Standard Preparation** Prepare calibration standards containing 0, 1, 2, 5 μ g/mL Cu. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Pb | $55 \mu g/mL$ | |----|----------------| | Zn | 20 μg/mL | ## **Tantalite Ore** ## Nb (Niobium) ## **Typical Analysis (Ore Concentrate)** $Ta_{2}O_{5}$ 50% TiO_{2} 2% $Nb_{2}O_{5}$ 10% SnO_{2} 15% #### **Sample Preparation** Fuse 1.000 g sample with 3 g sodium hydroxide in zirconium crucible at dull red heat until a clear melt is obtained. Cool and disperse the cake in 100 mL water in a PTFE beaker. Add 5 mL hydrochloric acid and 4 mL hydrofluoric acid, warm and add 4 mL 10 volume hydrogen peroxide to clear the solution. Cool the solution and dilute to 200 mL in a plastic flask. For $10\%\ Nb_2O_5$, the solution concentration will be approximately $350\ \mu g/mL\ Nb$. ### **Standard Preparation** Prepare calibration standards containing 0, 250, 500, 750 μ g/mL Nb. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Ta ₂ O ₅ | 2500 μg/mL | |--------------------------------|---------------| | SnO ₂ | 800 µg/mL | | NaOH | 1.5 g/100 mL | | HCI | 2.5 mL/100 mL | | HF | 2 mL/100 mL | ## Sn (Tin) ### **Typical Analysis** Refer to niobium in tantalite ore. #### **Sample Preparation** Refer to niobium in tantalite ore. For 15% SnO_2 , the solution concentration will be approximately 600 μ g/mL. ## **Standard Preparation** Prepare standards containing 0, 200, 400, 600, 800 µg/mL Sn. Each standard solution must contain the same reagents and major matrix elements as the sample at approximately the same concentrations. For the typical sample above, each standard should contain | Та | 2000 μg/mL | |------|---------------| | Nb | 350 μg/mL | | NaOH | 1.5 g/100 mL | | HCI | 2.5 mL/100 mL | | HF | 2 mL/100 mL | ## Ta (Tantalum) ## **Typical Analysis** Refer to niobium in tantalite ore. #### Interferences Sodium and fluoride at high concentrations are found in the sample solution and must be matched in the standards. #### **Sample Preparation** Refer to niobium in tantalite ore concentrate. Dilute 25 mL of sample solution to 50 mL. For 50% Ta₂O₅, the solution concentration will be approximately 1000 μ g/mL Ta. ### **Standard Preparation** Prepare calibration standards containing 500, 1000, 1500 μ g/mL Ta. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Nb ₂ O ₅ | 250 μg/mL | |--------------------------------|---------------| | SnO ₂ | 400 μg/mL | | NaOH | 0.75 g/100 mL | | HCI | 1.2 mL/100 mL | | HF | 1 mL/100 mL | ## Ti (Titanium) ### **Typical Analysis (Ore Concentrate)** Refer to niobium in tantalite ore. #### **Sample Preparation** Refer to niobium in tantalite ore. For 2% TiO $_2$ in a 1.000 g sample the solution concentration will be 60 μ g/mL Ti. #### **Standard Preparation** Prepare calibration standards containing 0, 25, 50, 75 $\mu g/mL$ Ti. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Ta ₂ O ₅ | 2500 μg/mL | |--------------------------------|---------------| | Nb ₂ O ₅ | 500 μg/mL | | SnO ₂ | 800 μg/mL | | NaOH | 1.5 g/100 mL | | HCI | 2.5 mL/100 mL | | HF | 2 mL/100 mL | ## **Wolframite** # W (Tungsten) ### **Typical Analysis** WO, 65% SiO, remainder MnO, trace ### **Sample Preparation** Fuse 0.500 g samples with 3 g potassium hydroxide in zirconium crucibles at dull red heat until a clear melt is obtained. Dissolve the cake in 200 mL boiling water. Add 20 mL phosphoric acid, warm slightly and add 5 mL 10 volume hydrogen peroxide to oxidize any insoluble manganese salts. Cool and dilute to 500 mL. For $65\% \text{ WO}_3$, the sample concentration will be approximately $515 \mu\text{g/mL W}$. #### **Standard Preparation** Prepare calibration standards containing 0, 250, 500, 750 μ g/mL W. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | SiO ₂ | 0.16 g/500 mL | |--------------------------------|---------------| | КОН | 3 g/500 mL | | H ₃ PO ₄ | 20 mL/500 mL | prepared as for the samples. # Ferro-Manganese Slags # Ba (Barium) ## **Typical Analysis** | Al ₂ O ₃ 15% | SiO ₂ 25% | |------------------------------------|----------------------| | FeO 1% | Mn 35% | | MgO 2% | $Na_2O + K_2O 2\%$ | | TiO ₂ 0.5% | BaO 5% | #### **Sample Preparation** Dissolve 2.000 g of finely powdered ore in 20 mL water and 40 mL hydrochloric acid. Filter into a 200 mL flask, ignite the filter in a platinum crucible with 3 g of sodium carbonate. Dissolve the melt in 15 mL hydrochloric acid and 5 mL 3% hydrogen peroxide and dilute to 200 mL. Add 20 mL of 10000 $\mu g/mL$ sodium solution (as an ionization suppressant) to 5 mL of the solution and dilute to 100 mL. For 5% BaO, the solution concentration will be approximately $23~\mu g/mL$ Ba. #### **Standard Preparation** Prepare calibration standards containing 0, 10, 20, 30 μ g/mL Ba. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Al | 40 μg/mL | |---------------------------------|---------------| | Si | 60 μg/mL | | Mn | 150 μg/mL | | Na ₂ CO ₃ | 0.07 g/100 mL | | HCI | 1.8 mL/100 mL | # Fe (Iron) ### **Typical Analysis** Refer to barium in ferro-manganese slags. #### Interferences The high levels of aluminium, silicon and manganese present have been found to depress the iron absorbance. The use of a nitrous oxide-acetylene flame has been found useful in preventing this interference. #### **Sample Preparation** Refer to barium in ferro-manganese slags. Use the undiluted solution. For 1% FeO, the solution concentration will be approximately 77 $\mu g/mL$ Fe. ## **Standard Preparation** Prepare calibration standard solutions containing 0, 50, 100, 150 μ g/mL Fe. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Al ₂ O ₃ | 1500 µg/mL | |--------------------------------|--------------| | SiO ₂ | 2500 μg/mL | | Mn | 3500 μg/mL | | MgO | 200 μg/mL | | Ti0 | 50 μg/mL | | Ва | 50 μg/mL | | HCI | 27 mL/100 mL | ## Mg (Magnesium) ## **Typical Analysis** Refer to barium in ferro-manganese slags. ### **Sample Preparation** Refer to barium in ferro-manganese slags. For 2% MgO, the solution concentration will be approximately 6 µg/mL Mg. #### **Standard Preparation** Prepare calibration standards containing 0, 5, 10, 15 μ g/mL Mg. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Al | 40 μg/mL | |---------------------------------|---------------| | Si | 60 μg/mL | | Mn | 150 μg/mL | | Na ₂ CO ₃ | 0.07 g/100 mL | | HCI | 1.8 mL/100 mL | # **Antimony Ore** ## Hg (Mercury) #### Range Up to 0.5% in antimony ore concentrates. #### **Sample Preparation** Accurately weigh 1.000 g of finely ground ore into a 250 mL conical beaker and slowly add 5 mL of 40% v/v bromine in carbon tetrachloride. Allow the solution to stand for 10 minutes after the initial vigorous reaction has ceased. Add 5 mL of aqua regia (1:3, nitric acid:hydrochloric acid); allow the solution to stand for a further five minutes, then heat gently to drive off excess bromine. Cool the solution, add 20 mL of 10% tartaric acid and warm gently for two minutes. Cool, add 5 mL of hydrochloric acid and dilute to 100 mL. For 0.5% Hg, the solution concentration will be approximately 50 μ g/mL Hg. #### **Standard Preparation** Prepare calibration standards containing 0, 25, 50, 100 μ g/mL Hg. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | 2.5% | tartaric acid | |------|-------------------| | 5% | hydrochloric acid | ## **Borax Ore** ## B (Boron) ### **Typical Analysis** B 14% Ca 20% H₂O 20% Si 2% Ti 0.01% ### **Sample Preparation** Weigh duplicate finely ground samples of 1.000 g into acid-washed conical beakers. Add 100 mL water and 5 mL hydrochloric acid to each beaker and maintain just below boiling for 1 hour. Cool and filter through a Whatman 546 filter paper into a 200 mL volumetric flask, wash the filter with water and make the filtrate up to volume. The precipitate is dried, ashed carefully in a zirconium
crucible, cooled, and fused with 2 g sodium hydroxide at a dull red heat until a clear melt is obtained. The crucible is cooled and 2 mL water added to start dissolving the melt. The crucible is then transferred to a 250 mL beaker and 50 mL water added to wash out the fused cake. The solution is heated slightly to disperse the cake, then cooled to room temperature and neutralized to pH 5 by the slow addition of dilute hydrochloric acid (1:3). Transfer to a 100 mL volumetric flask and make up to volume. For 14% B, the solution concentration will be approximately 700 μ g/mL B. ### **Standard Preparation** Prepare standards containing 200, 600, 1000 µg/mL B. # Si (Silicon) ## **Typical Analysis** Refer to boron in borax ore. #### **Sample Preparation** Refer to boron in borax ore. For 2% Si, the solution concentration will be approximately 200 μ g/mL Si. ### **Standard Preparation** Prepare calibration standards containing 0, 100, 150, 200 $\mu g/mL$ Si. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Na | 11500 μg/mL | |----|-------------| | Ca | 2000 μg/mL | | В | 1400 μg/mL | ## **Chrome Ore** ## Cr (Chromium) ### **Typical Analysis** Cr_2O_3 54% FeO 20% SiO, 4% #### Interferences The high level of iron present can lead to interferences which can be overcome by the use of a nitrous oxide-acetylene flame. ### **Sample Preparation** Fuse 0.500 g of finely ground dried sample with 2 g of ${\rm Na_2O_2}$ in a zirconium crucible. Cool, dissolve the fused melt in 70 mL of water, 5 mL nitric acid and 5 mL of 10 volume hydrogen peroxide. Dilute to 100 mL. Dilute 1.0 mL of this solution to 100 mL. For 54% Cr_2O_3 , the final solution concentration will be approximately 19 μ g/mL Cr. ### **Standard Preparation** Prepare calibration standards containing 0, 15, 20, 25 μ g/mL Cr. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Fe | 8 μg/mL | |--------------------------------|----------------| | Na ₂ O ₂ | 0.02 g/100 mL | | Nitric Acid | 0.05 mL/100 mL | # Fe (Iron) ### **Typical Analysis** Refer to chromium in chrome ore. #### Interferences A high dilution ratio is used in the preparation of the sample solution to prevent interference from chromium in the presence of hydrochloric acid. #### **Sample Preparation** Refer to chromium in chrome ore. Dilute 1 mL of sample solution to 100 mL. For 20% FeO, the solution concentration will be approximately $8 \mu g/mL$ Fe. #### **Standard Preparation** Prepare calibration standards containing 0, 5, 10, 15 μ g/mL Fe. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Cr | 20 μg/mL | |--------------------------------|----------------| | Na ₂ O ₂ | 0.02 g/100 mL | | Nitric Acid | 0.05 mL/100 mL | ## **Gold Ore** ## Ag (Silver) ## **Typical Analysis** Fe 12.3% Zn 350 μ g/g Ag 0.22 oz/ton (6 μ g/g) Li 70 μ g/g ### **Sample Preparation** Digest 1.500 g of finely ground ore with 5 mL hydrochloric acid, 5 mL nitric acid and 5 mL hydrofluoric acid in a PTFE. beaker. When the solution has cleared, add 5 mL sulfuric acid and evaporate to low volume to remove the hydrofluoric. Cool, transfer to a 50 mL volumetric flask and make up to the mark with distilled water. For 6 μ g/g Ag, the solution concentration will be approximately 0.2 μ g/mL Ag. ### **Standard Preparation** Prepare calibration standards containing 0, 0.1, 0.2, 0.3, 0.5 μ g/mL Ag. The standards must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain 3700 $\mu g/mL$ Fe. # Au (Gold) #### Range Down to 0.05 µg/g #### **Interferences** No interferences have been noted using this procedure. #### **Sample Preparation** Digest duplicate 2.5 g lots of finely powdered ore (+200 mesh) in 5 mL of hydrochloric acid. Add 3 mL nitric acid, and evaporate slowly to dryness. Add 15 mL hydrochloric acid and 40 mL hot water to each, and allow to cool. To one sample add 1 mL of 5.0 µg/mL Au standard solution. Add 5 mL hydrobromic acid to each solution and extract the gold bromide complex into 5 mL methyl isobutyl ketone. #### **Standard Preparation** Prepare a gold solution of 5.0 µg/mL. ## Fe (Iron) ## **Typical Analysis** Refer to silver in gold ores. ### **Sample Preparation** Refer to silver in gold ore. Dilute 5 mL of the prepared solution to 100 mL. For 12.3% Fe, the analytical solution will contain approximately 185 μ g/ mL Fe. #### **Standard Preparation** Prepare calibration standards containing 0, 50, 100, 150, 200 $\mu g/mL$ Fe. ## Li (Lithium) ### **Typical Analysis** Refer to silver in gold ores. #### **Sample Preparation** Refer to silver in gold ores. Use the prepared solution for analysis. For 70 μ g/g Li, the sample concentration will be approximately 2 μ g/mL Li. #### **Standard Preparation** Prepare calibration standards containing 0, 1, 2, 3, 4 μ g/mL Li. The standards must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain 3700 $\mu g/mL$ Fe. # Zn (Zinc) ### **Typical Analysis** Refer to silver in gold ores. #### **Sample Preparation** Refer to silver in gold ores. Dilute 5 mL of the prepared solution to 100 mL. For 350 $\mu g/g$ Zn, the analytical solution will contain approximately 0.5 $\mu g/mL$ Zn. #### **Standard Preparation** Prepare calibration standards containing 0, 0.2, 0.4, 0.6, 1.0 μ g/mL Zn. The standards must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain 185 μ g/mL Fe. ## Iron Ore # Co (Cobalt) ## **Typical Analysis** Fe 60% Si 4% Co 0.001% #### Interferences The high iron level can lead to severe interference and a solvent extraction technique is used to remove the excess iron. ### **Sample Preparation** Digest 2.000 g of finely ground ore in 25 mL hydrochloric acid. Evaporate to dryness and redissolve in a minimum volume of 50% hydrochloric acid. Filter and wash the residue with a minimum volume of hot 20% hydrochloric acid and water. Ignite the residue and set aside for subsequent treatment. Evaporate the filtrate to a paste and redissolve in 20 mL hydrochloric acid. Oxidize the solution by the dropwise addition of nitric acid. Wash the solution into a 100 mL separating funnel with hydrochloric acid. Add 50 mL isobutyl acetate and shake the mixture for 30 seconds. Run off the aqueous layer into a second separating funnel. Wash the organic layer with 5 mL of hydrochloric acid and add the washings to the second separating funnel. Repeat the above extraction using 30 mL isobutyl acetate and 5 mL hydrochloric acid wash. Evaporate the combined aqueous layers and washings almost to dryness. Redissolve the paste in 5 mL 50% nitric acid (v/v). This is designated solution A. Heat the ignition residue with 5 mL hydrofluoric acid and 2–3 drops sulfuric acid in order to eliminate the SiO2. Evaporate to dryness and fuse with 0.2 g sodium carbonate. Extract the melt with 10% nitric acid and combine with solution A. Transfer the combined aqueous solutions to a 25 mL volumetric flask and make up to volume. For 0.001% Co, the solution concentration will be approximately 1 $\mu g/mL$ Co. NOTE All percentage dilutions of acids are $\ensuremath{\text{v/v}}$ dilutions. #### **Standard Preparation** Prepare calibration standards containing 0, 0.5, 1.0, 1.5 μ g/mL Co. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: Nitric acid 10 mL/100 mLNa₂CO₃ 0.8 g/100 mL ## **Rutile and Zircon Ores** ## Al (Aluminium) #### Range Suitable for rutile and zircon sands down to 0.05% Al₂O₃. ### **Typical Analysis** #### Rutile | Cr_2O_3 0.13% | $V_{2}^{0}_{5} 0.7\%$ | ZrO ₂ 0.68% | |------------------------|-----------------------------------|-------------------------------------| | SnO ₂ 0.02% | Al ₂ 0 ₃ 1% | Nb ₂ O ₅ 0.2% | | TiO, and SiO, | remainder. | | #### Interferences Silicon and titanium depress the aluminium absorbance by the formation of refractory complexes. This effect is overcome by using standards containing these elements at the same concentration as the sample. ### **Sample Preparation** Fuse a catchweight sample (0.5 g) with 2.5 g KOH pellets in a zirconium crucible. Cool the melt and dissolve in 70 mL hot water and 1 mL hydrofluoric acid. Add 15 mL 1:1 sulfuric acid and heat gently to ensure a clear solution. Dilute to 100 mL. For 1% Al₂O₃, the solution concentration will be approximately $3 \mu g/mL$ Ål. #### **Standard Preparation** Prepare calibration standards containing 0, 1, 3, 5, 10 μ g/mL Al. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Si | 1500 μg/mL | |--------------------------------------|--------------| | Ti | 3000 μg/mL | | H ₂ SO ₄ (1:1) | 15 mL/100 mL | | HF | 1 mL/100 mL | | КОН | 2.5 g/100 mL | # Cr (Chromium) ### **Typical Analysis** Refer to aluminium in rutile and zircon ores. ### **Sample Preparation** Refer to aluminium in rutile and zircon ores. For 0.13% Cr_2O_3 , the solution concentration will
be approximately 4.5 $\mu\text{g/mL}$ Cr. ### **Standard Preparation** Prepare calibration standards containing 0, 5, 10, 15 μ g/mL Cr. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Si | 1500 μg/mL | |--------------------------------------|--------------| | Ti | 3000 μg/mL | | H ₂ SO ₄ (1:1) | 15 mL/100 mL | | HF | 1 mL/100 mL | | КОН | 2.5 g/100 mL | ## Sn (Tin) #### Range Suitable for ores and sands containing as little as 0.02% SnO_2 . #### **Interferences** At 224.6 nm, non-atomic species may absorb even in the nitrous oxide-acetylene flame. Use a background corrector. #### **Sample Preparation** Refer to aluminium in rutile and zircon ores, but use 1.000 g samples. For 0.02% SnO₂, the solution concentration will be approximately 1.5 μ g/mL Sn. #### **Standard Preparation** Prepare standards containing 0, 1.0, 1.5, 2.0 μg/mL Sn. Each standard solution must contain the same reagents and major matrix elements as the sample at approximately the same concentrations. For the typical sample above, each standards should contain: | Si | 3000 μg/mL | |--------------------------------------|---------------------------------| | Ti | 6000 μg/mL | | КОН | 2.5 g/100 mL | | H ₂ SO ₄ (1:1) | 15 mL/100 mL | | HF | 1 mL/100 mL (if used for sample | # V (Vanadium) ## **Typical Analysis** Refer to aluminium in rutile and zircon ores. #### Interferences Titanium and silicon may interfere. Matrix matching is essential. ### **Sample Preparation** Refer to aluminium in rutile and zircon ores. For 0.7% $\rm V_2O_5$ in rutile, the solution concentration will be 10 $\mu g/mL$ V. #### **Standard Preparation** Prepare calibration standards containing 0, 5, 10, 15, 20 $\mu g/mL$ V. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | КОН | 2.5 g/100 mL | |--------------------------------------|---| | H ₂ SO ₄ (1:1) | 15 mL/100 mL | | HF | 10 mL/100 mL of 10% HF (if used for sample) | | Si | 1500 μg/mL | | Ti | 3000 μg/mL | ## Zr (Zirconium) ### **Typical Analysis** Refer to aluminium in rutile and zircon ores. #### **Interferences** Many elements interfere, especially titanium, silicon and acids. The effects are minimized with a more oxidizing flame. #### **Sample Preparation** Refer to aluminium in rutile and zircon ores, but use 1.000 g samples (as for tin). For 0.68% ZrO_2 in a 1.000 g sample, the solution concentration will be approximately 50 μ g/mL Zr. #### **Standard Preparation** Prepare calibration standards containing 0, 25, 50, 75 μ g/mL Zr. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Si | 3000 μg/mL | |--------------------------------------|-------------------------------------| | Ti | 6000 µg/mL | | КОН | 2.5 g/100 mL | | H ₂ SO ₄ (1:1) | 15 mL/100 mL | | HF | 1 mL/100 mL
(if used for sample) | ## **Sulfide Ores** # Cu (Copper) #### Range 0.05-0.25% Cu #### References 1. Rawling, B.S., Amos, M.D., Proc. Aust. Inst. Min. Met., 6, 1035 (1965). #### **Sample Preparation** Dissolve 1.000 g finely ground, dried sample by gently heating with 20 mL hydrochloric acid in a covered beaker; do not boil. Reduce the volume to about 10 mL; add 5 mL nitric acid and evaporate to moist salts. Add 5 mL of 1:1 hydrochloric acid and heat gently to dissolve the salts. Cool, transfer to a 100 mL volumetric flask and make up to volume with 10% w/v ammonium acetate to keep the lead in solution. For 0.08% Cu, the solution concentration will be approximately 8 μ g/mL Cu. #### **Standard Preparation** Prepare calibration standards containing 0, 5, 10, 15, 20, 25 μ g/mL Cu. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration For example, in the typical case above the standards would contain: | Pb | 450 μg/mL | |------------------|------------| | Zn | 700 μg/mL | | HCI (1:1) | 5 mL/10 mL | | ammonium acetate | 10% w/v | ## Pb(Lead) #### Range 2.0-20.0% Pb #### **Sample Preparation** Refer to copper in sulfide ores. Take 2 mL of the prepared solution and add 5 mL of 1:1 hydrochloric acid. Dilute to 100 mL with 10% $\rm w/v$ ammonium acetate. For 4.5% Pb, the dilute solution will contain approximately 9 μ g/mL Pb. ### **Standard Preparation** Prepare calibration standards containing 0, 5, 10, 20, 30, 40 μ g/mL Pb. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: HCI (1:1) 5 mL/100 mL ammonium acetate 10% w/v # Sb (Antimony) ### **Typical Analysis** 15.5% Sb (Stibnite type ores) ### Reagents Bromine-carbon tetrachloride mixture (2:3): Prepare a mixture of A.R. grade bromine and carbon tetrachloride by adding 60 mL carbon tetrachloride to 40 mL bromine. ## WARNING Corrosive Liquid and Toxic Hazard Bromine (liquid/vapor) is highly corrosive and toxic. Take suitable precautions when handling this chemical or else a serious injury could result. Agua regia (hydrochloric/nitric acid; 3:1): Prepare 100 mL of aqua regia by mixing 75 mL concentrated hydrochloric acid with 25 mL concentrated nitric acid. Tartaric acid solution (10% w/v): Dissolve 10 g A.R. tartaric acid in 100 mL distilled water. #### **Sample Preparation** Dry a portion of finely ground sample at 110 °C. Weigh 0.500 g dried sample into a covered beaker and add 10 mL bromine-carbon tetrachloride mixture. Allow to stand for 10 minutes with periodic swirling. Add 10 mL aqua regia and allow to stand for a further 10 minutes. With the beaker still covered, heat gently on a water bath to drive off excess bromine (1–1.5 hour). Do not evaporate to dryness. Add 20 mL tartaric acid solution (10% w/v) and heat for a further 2 minutes. Cool, transfer to a 100 mL volumetric flask and make up to volume with distilled water. For analysis, add 10 mL of prepared solution to 10 mL of hydrochloric acid and dilute to 100 mL. For 15.5% Sb, the analytical solution will contain approximately 78 µg/mL Sb. ### **Standard Preparation** Prepare calibration standards containing 0, 50, 75, 100 μ g/mL Sh. The standard solutions must contain the same reagents and major elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | hydrochloric acid | 10 mL/100 mL | |-------------------------|--------------| | tartaric acid (10% w/v) | 2 mL/100 mL | # Zn (Zinc) #### Range 6.5-15.0% Zn ## **Sample Preparation** Refer to copper in sulfide ores. Take 2 mL of prepared solution and add 5 mL of 1:1 hydrochloric acid. Dilute to 100 mL with 10% w/v ammonium acetate. For 6.7% Zn the dilute solution will contain approximately 14 µg/mL Zn. #### **Standard Preparation** Prepare calibration standards containing 0, 10, 20, 30 μ g/mL Zn. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above, the standards would contain: | HCI (1:1) | 5 mL/100 mL | |------------------|-------------| | ammonium acetate | 10% w/v | ## **Tin Ores** ## Sn (Tin) ## Range Suitable for levels near 0.1%. #### **Typical Analysis** Sn 0.15% WO₃ 0.2% SiO₂ remainder #### Interferences At 224.6 nm, non-atomic species may absorb even in the nitrous oxide-acetylene flame. Use a background corrector to check for the presence of non-atomic absorption. #### **Sample Preparation** Fuse 1.000 g sample and 5 g sodium peroxide in a zirconium crucible at dull red heat until a clear melt is obtained. Cool and dissolve in water in a PTFE beaker. Neutralize to pH 7 with nitric acid (added slowly). Add 4 mL hydrofluoric acid and 3 g boric acid and dilute to 100 mL in a plastic volumetric flask. For 0.15% Sn, this is 15 μ g/mL Sn in solution. #### **Standard Preparation** Prepare calibration standards containing 0, 5, 10, 15 μ g/mL Sn Each standard solution must contain the same reagents and major matrix elements as the sample at approximately the same concentrations. For the typical sample above, the standards should contain: | Si | 4500 μg/mL | |--------------------------------|-------------| | Na | 30000 μg/mL | | HF | 4 mL/100 mL | | H ₃ BO ₃ | 3 g/100 mL | ## W (Tungsten) ### **Typical Analysis** Refer to tin in tin ores. #### Interferences ${\rm SiO}_2$ is separated and standard additions are used to compensate for Ca interference. #### **Sample Preparation** Add 50 mL hydrochloric acid to 1.000 g samples and heat at 70 °C for 3 hours. Allow to stand overnight and evaporate down to 10 mL to remove excess acid. Cool and dilute to 100 mL. For 0.2% WO $_3$ in a 1.000 g sample, this is 16 µg/mL W in solution. A 20 mL aliquot contains approximately 320 µg W ### **Standard Preparation** Stock 1000 µg/mL solution is required. # **Metallurgy** ## **Carbon Steels** ## Cu (Copper) ### **Typical Analysis** Cu 1% Si 1% Mn 1% V 0.2% Ni 0.1% Ti 0.1% Fe 90% C, S remainder #### **Sample Preparation** Weigh 2.000 g of sample into a PTFE beaker, add 5 mL of nitric acid and warm slowly. Add 5 mL of hydrochloric acid dropwise with constant stirring until the reaction subsides. Heat to near boiling for half an hour and cool. Add 2 mL of hydrofluoric acid very slowly so that the temperature of the mix does not exceed 35–40 °C, and let stand for half an hour to dissolve silicon, titanium and vanadium. Filter the solution to remove carbon. Ash the
filter and the residue in a platinum crucible. Rinse the crucible with a few drops of hydrofluoric and hydrochloric acids and add to the filtrate. Dilute to 200 mL in a plastic volumetric flask. Dilute 10 mL of this solution to 100 mL. For 1% Cu, the final solution concentration will be approximately 10 μ g/mL. #### **Standard Preparation** Prepare calibration standards containing 0, 5, 10, 15 μ g/mL Cu. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Fe | 900 μg/mL | |----|-----------| # Ti (Titanium) #### **Typical Analysis** Refer to copper in carbon steels. ### **Sample Preparation** Refer to copper in carbon steels; use the undiluted sample solution which contains approximately 10 μ g/mL Ti. ### **Standard Preparation** Prepare calibration standards containing 5, 10, 15 μ g/mL Ti. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Fe 1% | |-------| |-------| At this concentration the other interferences are suppressed. # **Iron Alloy** ## Al (Aluminium) ### **Typical Analysis** AI 0.005% Mn 0.75% Cr 0.04% Si 0.03% Cu 0.02% Fe remainder #### Interferences The large excess of iron in the matrix causes interference effects in the determination of each of the trace elements. This is minimized by the use of standards which contain a similar amount of iron to that in the sample. In the total trace element analysis of a complex sample, an alternative to employing individual element standards is to prepare a range of composite standards which have a base of the major matrix element. The same range of standards is then employed in all trace metal determinations in the parent sample. An example of this is given in the determination of AI, Cr, Cu, Mn, Si in iron alloy. Aluminium is partially ionized in the nitrous oxide-acetylene flame. To suppress ionization, add potassium nitrate or chloride to give a final concentration of 1000 μ g/mL potassium in all sample and standard solutions, including the blank. ### **Sample Preparation** Gently heat 2.000 g of sample with 25 mL 3:1 hydrochloric-nitric acid in a covered beaker. After the initial reaction has subsided, boil for 2–3 minutes to complete dissolution. Cool, transfer to a 100 mL volumetric flask and add 1 mL of a potassium chloride solution containing 100 g/L potassium. Make up to volume with distilled water. For 0.005% AI, the sample solution will contain approximately 1 μ g/mL AI with 1000 μ g/mL potassium added. #### **Composite Standard Preparation** Prepare a range of composite standards containing a series of concentrations of AI, Cr, Cu, Mn, Si in a pure iron matrix. The solutions are prepared according to the schedules given in Tables 1 and 2 To each composite standard solution, add potassium chloride to give a final concentration of $1000 \ \mu g/mL$ potassium. #### Basic Matrix Dissolve replicate 2.000 g lots of pure iron in 25 mL 3:1 hydrochloric-nitric acid. Add aliquots of individual element solutions to give a range of standard concentrations in a final volume of 100 mL. #### **Element Addition Solutions** Refer to the individual element standard conditions for the preparation of standard stock solutions. Prepare addition solutions at concentrations given in Table 1. Add aliquots of the addition solutions to the basic matrix above. Make up to 100 mL to give the range of standards in Table 2 Table 1 | Element | nt Concentration (µg/mL) | Aliquots (mL) | | | | |---------|--------------------------|---------------|-----------|-----------|-----------| | Element | | S1 | S2 | S3 | S4 | | Al | 10 | 0 | 5 | 10 | 15 | | Cr | 100 | 0 | 3 | 7 | 10 | | Cu | 100 | 0 | 2 | 4 | 6 | | Mn | 1000 | 0 | 10 | 15 | 20 | | Si | 50 | 0 | 5 | 10 | 15 | | K | 100000 | 1 | 1 | 1 | 1 | Table 2 | Standard No. | S1 | S2 | S3 | S4 | |-----------------------------|-----------|-------------|-----------|-----------| | Base: Fe (g/100 mL) | 2 | 2 | 2 | 2 | | Trace element | Concentra | tion (µg/mL | -) | | | Al | 0 | 0.5 | 1.0 | 1.5 | | Cr | 0 | 3.0 | 7.0 | 10.0 | | Cu | 0 | 2.0 | 4.0 | 6.0 | | Mn | 0 | 100 | 150 | 200 | | Si | 0 | 2.5 | 5.0 | 7.5 | | lonization suppressant
K | 1000 | 1000 | 1000 | 1000 | #### For example: Aluminium addition solution: Prepare a solution containing 10 µg/mL Al. Prepare four composite standard solutions as specified in Table 2 using the basic matrix and the element addition solutions specified in Table 1. Thus for the aluminium addition, no aluminium stock solution (10 μ g/mL) is added to 'S1', 5 mL is added to 'S1' and so on. Now add element addition solutions for the other elements specified in Table 1 using appropriate aliquots of the element stock solutions. Add 1 mL of a solution containing 100 g/L potassium to each of the four composite standards. Finally, make up each of the four composite standards to 100 mL with distilled water. The composite standards will contain 0, 0.5, 1, 1.5 μ g/mL Al. # Cr (Chromium) ## **Typical Analysis** Refer to aluminium in iron alloy. #### Interferences A range of composite standards, prepared in a pure iron matrix, is used to compensate for the large excess of iron in the sample. Chemical interference by the iron is overcome by the use of a nitrous oxide-acetylene flame. #### **Sample Preparation** Refer to aluminium in iron alloy. For 0.04% Cr, the sample solution concentration will be approximately 8 µg/mL Cr. #### **Standard Preparation** Refer to aluminium in iron alloy. The composite standards will contain 0, 3, 7, 10 μg/mL Cr. ## Cu (Copper) ## **Typical Analysis** Refer to aluminium in iron alloy. #### Interferences A range of composite standards, prepared in a pure iron matrix, is used to compensate for the large excess of iron in the sample. #### **Sample Preparation** Refer to aluminium in iron alloy. For 0.02% Cu, the sample solution concentration will be approximately 4 $\mu g/mL$ Cu. ## **Standard Preparation** Refer to aluminium in iron alloy. The composite standards will contain 0, 2, 4, 6 µg/mL Cu. # K (Potassium) #### **Typical Analysis** Fe 63% Ti 1.2% Si 3% K 0.09% AI 1.4% Na 0.17% #### **Sample Preparation** Take 0.5 g catchweight samples in PTFE beakers. Add 20 mL nitric acid and 10 mL hydrochloric acid and warm slowly. When the reaction subsides, heat to near boiling for 30 minutes, then cool. Add 10 mL hydrofluoric acid, keeping the temperature below 50 °C to avoid loss of silicon. Allow to stand for 5 minutes, then add 0.5 g boric acid to remove excess fluoride and dissolve any precipitated iron fluorides. Dilute to 100 mL, then further dilute 2 mL to 100 mL for potassium determination. For 0.09% K in a 0.5 g sample, the final solution concentration will be approximately 1 $\mu g/mL$ K ### **Standard Preparation** Prepare calibration standards of 0, 0.5, 1.0, 1.5 μ g/mL K, each containing 600 μ g/mL iron to approximate the sample solution matrix ## Mn (Manganese) ### **Typical Analysis** Refer to aluminium in iron alloy. #### **Interferences** A range of composite standards, prepared in a pure iron matrix, is used to compensate for the large excess of iron in the sample. ### **Sample Preparation** Refer to aluminium in iron alloy. For 0.75% Mn, the sample solution concentration will be approximately $150 \mu g/mL$ Mn. #### **Standard Preparation** Refer to aluminium in iron alloy. The composite standards will contain 0, 100, 150, 200 $\mu g/mL$ Mn. ## Si (Silicon) #### **Typical Analysis** Refer to aluminium in iron alloy. #### Interferences A range of composite standards, prepared in a pure iron matrix, is used to compensate for the large excess of iron in the sample #### **Sample Preparation** Refer to aluminium in iron alloy. For 0.03% Si, the sample solution concentration will be approximately 6 $\mu g/mL$ Si. #### **Standard Preparation** Refer to aluminium in iron alloy. The composite standards will contain 0, 2.5, 5, 7.5 µg/mL Si ## **Ferrosilicon** ## Al (Aluminium) ### Range 0.2-5% AI #### **Typical Analysis** Ferrosilicon (FeSi) 90% Al 2% Ca 0.5% #### **Interferences** Silicon suppresses the aluminium absorbance by up to 30%. This is overcome by using standards containing silicon at the same concentration as the sample. Aluminium is partially ionized in the nitrous oxide-acetylene flame. To suppress ionization, add potassium nitrate or chloride solution to give a final concentration or 2000 $\mu g/mL$ potassium in all solutions including the blank. #### **Sample Preparation** Dissolve 1.000 g sample in 5 mL water, 10 mL nitric acid and 10 mL hydrofluoric acid in a PTFE beaker. Evaporate to dryness and dissolve the residue in 10 mL nitric acid, 10 mL water and 5 mL of 10 volume hydrogen peroxide. Dilute to 250 mL with the addition of potassium to a concentration of 2000 $\mu g/mL$. For 2% Al, the solution concentration will be approximately 80 $\mu g/mL$ Al. ### **Standard Preparation** Prepare calibration standards containing 0, 50, 100, 200 μ g/mL Al. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above, the standards would contain: | Fe | 2400 μg/mL | |------------------|-------------| | Si | 1200 μg/mL | | K | 2000 μg/mL | | HNO ₃ | 4 mL/100 mL | # Ca (Calcium) ### **Interferences** Silicon, aluminium and iron all depress the calcium absorbance to varying degrees. This is overcome by using a nitrous oxide-acetylene flame and by using standards containing these major matrix elements at the same concentration as the sample. Calcium is partially ionized in the nitrous oxide-acetylene flame. To suppress ionization add potassium
nitrate or chloride to give final concentration of 2000 $\mu g/mL$ potassium in all solutions including the blank. ## **Sample Preparation** Refer to aluminium in ferrosilicon. For 0.5% Ca, the solution concentration will be approximately 20 $\mu g/\text{mL}$ Ca. #### **Standard Preparation** Prepare calibration standards containing 0, 10, 20, 30 μ g/mL Ca. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Fe | 2400 μg/mL | | |------------------|-------------|--| | Si | 1200 μg/mL | | | K | 2000 μg/mL | | | HNO ₃ | 4 mL/100 mL | | ## **Steels** ## AI (Aluminium) ### Range 2-4% AI #### **Typical Analysis** Fe 83% Si 1.4% Ca 0.52% Mg 0.36% Ti 1.2% V 0.6% Mn 0.08% Al 3% Na 0.17% Remainder: Cr, Ni, etc. #### Interferences Silicon suppresses the aluminium absorbance by up to 30%. This is overcome by using standards containing silicon at the same concentration as the sample. Aluminium is partially ionized in the nitrous oxide-acetylene flame. To suppress ionization, add potassium nitrate or chloride solution to give a final concentration of 2000 $\mu g/mL$ potassium in all solutions including the blank. #### **Sample Preparation** Dissolve 0.500 g sample in 20 mL nitric acid, 10 mL hydrochloric acid in a PTFE beaker. Heat to aid dissolution. Cool; add 10 mL hydrofluoric acid slowly so that the temperature of the beaker is maintained at 50-60 °C to prevent volatilization of the silicon. Add 0.5 g A.R. boric acid to complex excess hydrofluoric acid; add 0.2 g potassium as the nitrate and dilute to 100 mL. For 3% AI, the solution concentration will be approximately 150 µg/mL AI. #### Notes: If silicon, titanium and niobium are not present in the sample, the hydrofluoric acid treatment may be omitted. Use the method of standard additions to correct for the complex matrix of the sample solutions. ### **Standard Preparation** Prepare standards containing 0, 50, 100 μ g/mL added Al by pipetting aliquots of a 1000 μ g/mL Al solution into 25 mL aliquots of the sample solution. Dilute to 50 mL. ## Mn (Manganese) ### **Typical Analysis** Refer to aluminium in steels. #### **Sample Preparation** Refer to aluminium in steels. For 0.08% Mn the solution concentration will be 4 μ g/mL Mn. #### **Standard Preparation** Only the 1000 μ g/mL Mn standard solution is required. The standard addition procedure is used to avoid matching the complicated solution matrix. ## Na (Sodium) ### **Typical Analysis** Refer to aluminium in steels. #### **Sample Preparation** Refer to aluminium in steels. For 0.17% Na in a 0.500 g sample the solution concentration will be $8.5 \mu g/mL$. ### **Standard Preparation** Dilute the 1000 μ g/mL standard solution to 100 μ g/mL. The standard addition method is used so that matrix matching is unnecessary. ## Si (Silicon) #### **Typical Analysis** Refer to aluminium in steels. #### **Sample Preparation** Refer to aluminium in steels. #### **Standard Preparation** Prepare standards containing 0, 20, 40 µg/mL added Si by pipetting 0, 1, 2 mL aliquots of a 1000 µg/mL Si standard into 25 mL aliquots of sample solution. Dilute to 50 mL. # Ti (Titanium) #### **Typical Analysis** Refer to aluminium in steels. ### **Sample Preparation** Refer to aluminium in steels. For 1.2% Ti, the solution concentration will be approximately $60 \ \mu g/mL$ Ti. ## **Standard Preparation** Only the 1000 μ g/mL stock solution is required; the standard addition method is used to avoid matching samples and standards. ## V (Vanadium) ## **Typical Analysis** Refer to aluminium in steels. #### Interferences Many elements present will interfere. Use the method of standard additions to compensate for the interferences. ### **Sample Preparation** Refer to aluminium in steels. #### **Standard Preparation** An aqueous solution only is required as the method of standard additions is used. ## **Stainless Steel** ## Cr (Chromium) ### **Typical Analysis** Cr 15% Nb 1% Si 0.5% Mn 2% Ni 8% Ta 0.04% Mo 0.03% Fe remainder #### **Interferences** A nitrous oxide-acetylene flame is used to overcome chemical interference from iron and nickel. 50% (v/v) ethanol is added to improve sensitivity. #### **Sample Preparation** Refer to niobium in stainless steel. Take 2 mL of the prepared solution, add 2 mL hydrochloric acid and 50 mL ethanol. Dilute to 100 mL with distilled water. For 15% Cr, the dilute solution will contain approximately 75 µg/mL Cr. #### **Standard Preparation** Prepare calibration standards containing 0, 25, 50, 75, 100 μ g/mL Cr. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Fe | 500 μg/mL | |-------------------|--------------| | Ni | 40 μg/mL | | hydrochloric acid | 2 mL/100 mL | | ethanol | 50 mL/100 mL | ## Mn (Manganese) ### **Typical Analysis** Refer to chromium in stainless steel. #### **Interferences** 50% (v/v) ethanol is added to improve sensitivity and minimize interferences. #### References 1. Hubbard, D.B. and Monks, H.H., Anal. Chim. Acta., 47, 197 (1969) #### **Sample Preparation** Refer to niobium in stainless steel. Take 2 mL of the prepared solution, add 2 mL hydrochloric acid and 50 mL ethanol. Dilute to 100 mL with distilled water. For 2% Mn, the dilute solution will contain approximately $10 \mu g/mL$ Mn. #### **Standard Preparation** Prepare calibration standards containing 0, 5, 10, 15, 20 μ g/mL Mn. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Fe | 500 μg/mL | |-------------------|--------------| | Cr | 75 μg/mL | | Ni | 40 μg/mL | | hydrochloric acid | 2 mL/100 mL | | ethanol | 50 mL/100 mL | # Mo (Molybdenum) ## Range 0.2% - 0.8% Mo ### **Sample Preparation** Dissolve 1.000 g samples in 30 mL dilute aqua regia (1:1). Boil for 5 minutes, add 30 mL water, filter and dilute to 250 mL. For 0.5% Mo in a 1.000 g sample, the solution concentration is 20 μ g/mL Mo. ## **Standard Preparation** Prepare calibration standards containing 0, 15, 20, 30 $\mu g/mL$ Mo, each containing 3000 $\mu g/mL$ Fe to approximately match the samples. ## Ni (Nickel) ### **Typical Analysis** Refer to chromium in stainless steel. #### Interferences A nitrous oxide-acetylene flame is used to overcome interference from iron and chromium in hydrochloric acid matrix. 50% (v/v) ethanol is added to improve sensitivity. #### **Sample Preparation** Refer to niobium in stainless steel. Take 2 mL of the prepared solution, add 2 mL hydrochloric acid and 50 mL ethanol. Dilute to 100 mL with distilled water. For 8% Ni, the dilute solution will contain approximately 40 μ g/mL Ni. #### **Standard Preparation** Prepare calibration standards containing 0, 10, 30, 50 μ g/mL Ni. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Fe | 500 μg/mL | |-------------------|--------------| | Cr | 75 μg/mL | | hydrochloric acid | 2 mL/100 mL | | ethanol | 50 mL/100 mL | # Nb (Niobium) ## **Typical Analysis** Refer to chromium in stainless steel. #### **Interferences** Many of the elements present interfere. Add ammonium fluoride and ethanol to the solution to increase the niobium absorbance and suppress the interferences. #### References - 1. Headridge, J.B. and Hubbard, D.P., Anal. Chim. Acta., 37, 151 (1967). - 2. Bond, A.M., Anal. Chem., 42, 932 (1970). #### **Sample Preparation** Dissolve 2.5 g samples in 10 mL hydrochloric acid, with careful dropwise addition of 3 mL nitric acid and 2 mL hydrofluoric acid in a PTFE beaker. Evaporate to moist salts. Dissolve the salts in 5 mL hydrochloric acid, 2 mL hydrofluoric acid and 5 mL water. Add 10 mL 1 M ammonium fluoride and 50 mL ethanol, and dilute to 100 mL in a plastic volumetric flask. For 1% Nb the solution concentration will be 250 $\mu g/mL$. #### **Standard Preparation** Prepare calibration standards containing 0, 100, 150, 200, 250 μ g/mL Nb. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | HCI | 5% | |---------|------------------------------| | HF | 2% | | Ethanol | 50% | | NH4F | 10 mL/100 mL of 1 M solution | | Fe | 2.5 g/100 mL | ## Ta (Tantalum) ## **Typical Analysis** Refer to chromium in stainless steel. #### Interferences Ammonium fluoride and ethanol are used to improve the sensitivity and minimize interferences. #### **Sample Preparation** Refer to niobium in stainless steel. For 0.04% Ta, the solution concentration will be approximately 10 µg/mL Ta. #### **Standard Preparation** Prepare calibration standards containing 0, 5, 10, 15, 20 μ g/mL Ta. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | HCI | 5 mL/100 mL | |---------|---------------------------| | Cr | 3750 μg/mL | | HF | 2 mL/100 mL | | Ni | 2000 μg/mL | | NH4F | 10 mL/100 mL | | Mn | 500 μg/mL of 1 M solution | | Fe | 2.5 g/100 mL | | Nb | 250 μg/mL | | Ethanol | 50 mL/100 mL | # **Aluminium-Silicon Alloy** ## Al (Aluminium) ### **Typical Analysis** AI 84.7% Mg 0.02% Si 13.2% Cu 1.0% Mn 0.13% Sn 0.05% Fe 0.4% Pb 0.05% Zn 0.45% #### Interferences Aluminium is partially ionized in the nitrous oxide-acetylene flame. To suppress ionization, add potassium nitrate or chloride to give a final concentration of
2000 μ g/mL potassium in all solutions including the blank. #### **Sample Preparation** Place 1.000 g of sample into a covered PTFE beaker in a cooling bath. Add 20 mL hydrochloric acid dropwise, allowing the reaction to subside between additions. ## WARNING The reaction is vigorous and the beaker should be cooled during the addition of the acid or else a serious injury could result. Add 4 mL hydrofluoric acid and allow to stand for 10 minutes, taking care that the temperature does not exceed $50-60\,^{\circ}$ C. Add 4 mL nitric acid dropwise; again taking care to cool the mixture during reaction. Cool and add 0.5 g A.R. boric acid to complex the excess fluorides. Transfer to a 100 mL volumetric flask and make up to volume with distilled water. For analysis, take 5 mL of the prepared solution, add 2 mL of a solution containing 100 g/L potassium and make up to 100 mL with distilled water. For 84.7% Al, the analytical solution will contain approximately 425 $\mu g/mL$ Al with 2000 $\mu g/mL$ potassium added. ### **Standard Preparation** Prepare calibration standards containing 0, 200, 300, 400, 500 μ g/mL Al. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Si | 70 μg/mL | |-------------------|----------------| | K | 2000 μg/mL | | hydrochloric acid | 1 mL/100 mL | | boric acid | 0.025 g/100 mL | ## Cu (Copper) ## **Typical Analysis** Refer to aluminium in aluminium-silicon alloy. #### **Sample Preparation** Refer to aluminium in aluminium-silicon alloy. Use the diluted solution; for 1.0% Cu, the solution concentration will be approximately $5 \mu g/mL$ Cu. #### **Standard Preparation** Prepare calibration standards containing 0, 2, 4, 6 μ g/mL Cu. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Al | 425 μg/mL | |-------------------|----------------| | Si | 70 μg/mL | | K | 2000 μg/mL | | hydrochloric acid | 1 mL/100 mL | | boric acid | 0.025 g/100 mL | ## Fe (Iron) ### **Typical Analysis** Refer to aluminium in aluminium-silicon alloy. #### Interferences A nitrous oxide-acetylene flame is used to overcome possible chemical interference from the complex matrix. ### **Sample Preparation** Refer to aluminium in aluminium-silicon alloy. Use the undiluted solution; for 0.4% Fe, the solution concentration will be approximately $40 \mu g/mL$ Fe. ### **Standard Preparation** Prepare calibration standards containing 0, 20, 30, 40, 50 μ g/mL Fe. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Al | 8500 μg/mL | |-------------------|--------------| | Si | 1300 μg/mL | | hydrochloric acid | 20 mL/100 mL | | nitric acid | 4 mL/100 mL | | hydrofluoric acid | 4 mL/100 mL | | boric acid | 0.5 g/100 mL | ## Mg (Magnesium) ## **Typical Analysis** Refer to aluminium in aluminium-silicon alloy. #### Interferences A nitrous oxide-acetylene flame is used to overcome interference from the aluminium-silicon matrix. ### **Sample Preparation** Refer to aluminium in aluminium-silicon alloy. Use the dilute solution; for 0.02% Mg the solution concentration will be approximately 0.1 $\mu g/mL$ Mg. ### **Standard Preparation** Prepare calibration standards containing 0, 0.05, 0.1, 0.2 μ g/mL Mg. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Al | 425 μg/mL | |-------------------|----------------| | Si | 70 μg/mL | | K | 2000 μg/mL | | hydrochloric acid | 1 mL/100 mL | | boric acid | 0.025 g/100 mL | ## Mn (Manganese) #### **Typical Analysis** Refer to aluminium in aluminium-silicon alloy. ### **Sample Preparation** Refer to aluminium in aluminium-silicon alloy. Use the undiluted solution; for 0.13% Mn, the solution concentration will be approximately 13 μ g/mL Mn. ### **Standard Preparation** Prepare calibration standards containing 0, 10, 15, 20 μ g/mL Mn. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Al | 8500 μg/mL | |-------------------|--------------| | Si | 1300 μg/mL | | hydrochloric acid | 20 mL/100 mL | | nitric acid | 4 mL/100 mL | | hydrofluoric acid | 4 mL/100 mL | | boric acid | 0.5 g/100 mL | ## Pb (Lead) ### **Typical Analysis** Refer to aluminium in aluminium-silicon alloy. #### Interferences At the 217.0 nm wavelength, non-atomic species in the air-acetylene flame absorb strongly. Use a background corrector to check for the presence of non-atomic absorption. #### **Sample Preparation** Refer to aluminium in aluminium-silicon alloy. Use the undiluted solution; for 0.05% Pb, the solution concentration will be approximately $5 \mu g/mL$ Pb. #### **Standard Preparation** Prepare calibration standards containing 0, 2, 4, 6, 8 μ g/mL Pb. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Al | 8500 μg/mL | |-------------------|--------------| | Si | 1300 μg/mL | | hydrochloric acid | 20 mL/100 mL | | nitric acid | 4 mL/100 mL | | hydrofluoric acid | 4 mL/100 mL | | boric acid | 0.5 g/100 mL | # Si (Silicon) ### **Typical Analysis** Refer to aluminium in aluminium-silicon alloy. #### **Sample Preparation** Use the dilute solution; for 13.2% Si, the solution concentration will be approximately 70 μ g/mL Si. ## **Standard Preparation** Refer to silicon standard conditions. Prepare calibration standards containing 0, 50, 75, 100 μ g/mL Si. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Al | 425 μg/mL | |-------------------|----------------| | K | 2000 μg/mL | | hydrochloric acid | 1 mL/100 mL | | boric acid | 0.025 g/100 mL | ## Sn (Tin) ## **Typical Analysis** Refer to aluminium in aluminium-silicon alloy. #### Interferences At 224.6 nm, non-atomic species in the flame may absorb strongly. Use a background corrector to check for the presence of non-atomic absorption. #### **Sample Preparation** Refer to aluminium in aluminium-silicon alloy. Use the undiluted solution; for 0.05% Sn, the solution concentration will be approximately 5 μ g/mL Sn. ## **Standard Preparation** Prepare calibration standards containing 0, 2, 4, 6, 8 μ g/mL Sn. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Al | 8500 μg/mL | |-------------------|--------------| | Si | 1300 μg/mL | | hydrochloric acid | 20 mL/100 mL | | nitric acid | 4 mL/100 mL | | hydrofluoric acid | 4 mL/100 mL | | boric acid | 0.5 g/100 mL | # Zn (Zinc) #### **Typical Analysis** Refer to aluminium in aluminium-silicon alloy. ### Interferences At the 213.9 nm wavelength, non-atomic species in the flame absorb strongly. Use a background corrector to check for the presence of non-atomic absorption. #### **Sample Preparation** Refer to aluminium in aluminium-silicon alloy. Use the dilute solution; for 0.45% Zn, the solution concentration will be approximately $2 \mu g/mL$ Zn. #### **Standard Preparation** Prepare calibration standards containing 0, 0.5, 1.0, 2.0, 2.5 $\mu g/mL$ Zn. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Al | 425 μg/mL | |-------------------|----------------| | Si | 70 μg/mL | | K | 2000 μg/mL | | hydrochloric acid | 1 mL/100 mL | | boric acid | 0.025 g/100 mL | # **Copper-Beryllium Alloy** ## Be (Beryllium) ## **Typical Analysis** Be 2% Cu 98% ## **Sample Preparation** Dissolve 1.000 g of alloy in 5 mL dilute nitric acid (1:4) without heating. Dilute to 1 liter with distilled water. For 2% Be, the solution concentration will be approximately 20 µg/mL Be. #### **Standard Preparation** Prepare calibration standards containing 0, 10, 20, 30 μ g/mL Be. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: Cu 2000 μ g/mL ## **Brass** ## Cu (Copper) ## **Typical Analysis** Cu 70% Zn 29% Fe 0.01% #### **Sample Preparation** Dissolve 1.000 g of brass in 5 mL of hydrochloric acid and 5 mL of nitric acid. When the initial reaction has ceased, heat to near boiling for 5–10 minutes. Cool and dilute to 500 mL. For 70% Cu, the solution concentration will be approximately 1400 μ g/mL Cu. ## **Standard Preparation** Prepare calibration standards containing 0, 1000, 1500, 2000 $\mu g/mL$ Cu. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: Zn 600 $\mu g/mL$ ## **Bronze** ## Al (Aluminium) #### Range 0-20% AI ### **Typical Analysis** Cu 82% Fe 3% Pb 4% Ni 1.3% Zn 0.01% Al 9% Sb 0.1% #### Interferences Aluminium is partially ionized in the nitrous oxide-acetylene flame. To suppress ionization, add potassium nitrate or chloride to give
final concentration of 2000 μ g/mL potassium in all solutions including the blank. #### **Sample Preparation** Dissolve 1.000 g bronze in 20 mL hydrochloric acid, 10 mL nitric acid and 5 mL water. Evaporate down to approximately 5 mL and then dilute to 1000 mL with the addition of 2.0 g potassium as the nitrate. For 9% AI, the solution concentration will be approximately 90 μ g/mL AI. ### **Standard Preparation** Prepare calibration standards containing 0, 50, 100, 150 $\mu g/mL$ AI. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Cu | 800 μg/mL | |----|------------| | Fe | 30 μg/mL | | Pb | 40 μg/mL | | Ni | 15 μg/mL | | K | 2000 μg/mL | # Fe (Iron) ### **Typical Analysis** Refer to aluminium in bronze. ### **Sample Preparation** Refer to aluminium in bronze. For 3% Fe, the solution concentration will be approximately 30 μ g/mL Fe. #### **Standard Preparation** Prepare calibration standards containing 0, 20, 30, 40 μ g/mL Fe. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Cu | 8200 µg/mL | |----|------------| | Al | 90 μg/mL | | Pb | 40 μg/mL | | Sb | 10 μg/mL | | Ni | 10 μg/mL | ## Pb (Lead) #### **Typical Analysis** Refer to aluminium in bronze. #### Interferences No interferences have been reported. #### **Sample Preparation** Refer to aluminium in bronze. For 4% Pb, the solution concentration will be approximately $40 \mu g/mL$ Pb. #### **Standard Preparation** Prepare calibration standards containing 0, 30, 40, 50 μ g/mL Pb. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Al | 100 μg/mL | |----|-----------| | Cu | 800 μg/mL | | Fe | 30 μg/mL | | Ni | 15 μg/mL | # Sb (Antimony) #### Range Up to 0.5% in bronze and brass. ## **Typical Analysis** Refer to aluminium in bronze. #### **Interferences** At 217.6 nm, non-atomic species in the air-acetylene flame may absorb strongly. Use a background corrector to check for the presence of non-atomic absorption. #### **Sample Preparation** Dissolve 1.000 g samples in 5 mL hydrochloric acid and 5 mL nitric acid, with gentle warming. Do not boil the solution. When the reaction is complete, dilute quantitatively to 100 mL. For 0.1% Sb in a 1.000 g sample, the solution concentration is 10 μ g/mL Sb. #### **Standard Preparation** Prepare calibration standards containing 0, 10, 20, 30, 40, 50 $\mu g/mL$ Sb. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Cu | 8000 μg/mL | |------------------|-------------| | HCI | 5 mL/100 mL | | HNO ₃ | 5 mL/100 mL | # **Cadmium Alloys** ## Cd (Cadmium) ### **Typical Analysis** Cd 20% Ag 50% Cu 15% Zn 15% #### **Sample Preparation** Dissolve 0.500 g of alloy in 25 mL of 1:1 nitric acid and dilute to 200 mL. For 20% Cd, the solution concentration will be approximately 500 μ g/mL Cd. #### **Standard Preparation** Prepare calibration standards containing 0, 250, 500, 750 μ g/mL Cd. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Ag | 1250 μg/mL | |----|------------| | Cu | 375 μg/mL | | Zn | 375 μg/mL | # **Cobalt and Nickel Alloys** # Co (Cobalt) #### **Typical Analysis** ## **Interferences** The high chromium and nickel levels can lead to interference in the presence of hydrochloric acid. The use of a nitrous oxide-acetylene flame will remove the interference. #### **Sample Preparation** Digest 0.500 g sample in a PTFE beaker with 2 mL water, 10 mL hydrochloric acid and 5 mL nitric acid. Add 2 mL nitric acid and 5 mL hydrochloric acid and reheat for another 30 minutes. Cool, add 5 mL hydrofluoric acid and fume to dryness. Add 5 mL nitric acid and heat for 10 minutes. Repeat with a further 5 mL nitric acid. Add 10 mL hydrochloric acid and reheat to boiling, cool, dilute to 100 mL. For 1% Co, the solution concentration will be approximately 50 $\mu g/mL$ Co. #### **Standard Preparation** Prepare calibration standards containing 0, 50, 100, 150 $\mu g/$ mL Co. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Ni | 3250 μg/mL | |-----|--------------| | Cr | 650 μg/mL | | Fe | 250 μg/mL | | HCI | 10 mL/100 mL | # **Jewelry Clippings** ## Au (Gold) ## Range $0.05 \, \mu g/g - 50\%$ #### Interferences Inter-element interferences are minimized by application of the standard addition method. #### **Sample Preparation** Dissolve 0.5000 g of jewellery clippings in aqua regia (mixture of nitric acid and hydrochloric acid in a ratio of 1:3). Make up to 100 mL with distilled water. Take 10 mL of this solution and dissolve with distilled water to 100 mL. For a sample containing 5% gold, the dilute solution will contain $25~\mu g/mL$ Au. #### **Standard Preparation** Pipette 5 mL aliquots of the sample solution into five 10 mL volumetric flasks. Add 0, 1, 2, 3, 5 mL of 20 μ g/mL Au solution and make up to volume with distilled water. The prepared standards will contain 0, 2, 4, 6, 10 $\mu g/mL$ added gold. # Pd (Palladium) #### Range $0.05 \, \mu g/mL - 5\%$ #### Interferences A method of standard additions is used to overcome matrix interferences. In the presence of high levels of aluminium, cobalt or nickel, signal depression can be eliminated by addition of lanthanum (5000 $\mu g/mL$ as chloride) or EDTA (0.01 M) to all solutions. #### **Sample Preparation** Prepare as for gold in jewellery clippings procedure. Include dilution of 10 mL sample solution to 100 mL as indicated. For a sample containing 2% Pd, the dilute solution will contain 10 μ g/mL Pd. #### **Standard Preparation** Prepare 20 μ g/mL Pd solution by dilution of 2 mL of 1000 μ g/mL Pd solution to 100 mL. #### **Standard Addition** Pipette 5 mL aliquots of the sample solution into five 10 mL volumetric flasks. Add 0, 1, 2, 3, 5 mL of 20 μ g/mL Pd solution and make up to volume with distilled water. The prepared standards will contain 0, 2, 4, 6, 10 $\mu g/mL$ added palladium. ## Pt (Platinum) #### Range $0.05 \, \mu g/mL - 20\%$ #### **Interferences** Signal depression caused by presence of other noble metals in solution can be eliminated by addition of lanthanum (1%) or copper (2%) to all solutions. The standard addition method recommended here will minimize the effect of inter-element interferences. ### **Sample Preparation** Dissolve 0.5000 g of jewellery clippings in aqua regia. Make up to 100 mL with distilled water. For a sample containing 2% platinum, the solution will contain $100 \mu g/mL$ Pt. #### **Standard Preparation** Dilute 20 mL of 1000 $\mu g/g$ Pt solution to 100 mL to obtain 200 $\mu g/mL$ Pt standard. #### **Standard Addition** Pipette 5 mL aliquots of the sample solution into five 10 mL flasks. Add 0, 1, 2, 5 mL of 200 μ g/mL Pt solution and make up to volume with distilled water. The prepared standards will contain 0, 20, 40, 100 μ g/mL added platinum. # **Lead Alloy** # As (Arsenic) ### Range 0.01-0.1% As ### **Typical Analysis** Pb 76% Sb 13% Sn 10% Zn 0.004% Ni 0.003% As 0.04% ### **Sample Preparation** Dissolve 0.500 g of alloy in 2 mL hydrofluoric acid, 5 mL nitric acid and 10 mL water in a PTFE beaker. Dilute to 100 mL in a plastic volumetric flask. For 0.04% As, the solution concentration will be approximately $2.0 \mu g/mL$ As. #### **Standard Preparation** Prepare calibration standards containing 0, 1, 2, 5 µg/mL As. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Pb | 3800 μg/mL | |------------------|-------------| | Sb | 650 μg/mL | | Sn | 500 μg/mL | | HF | 2 mL/100 mL | | HNO ₃ | 5 mL/100 mL | # **Nickel Alloy** # Ag (Silver) ### **Typical Analysis** Ag $10 \mu g/g$ #### **Sample Preparation** Accurately weigh 2.000 g of sample into a 150 mL PTFE beaker and add a mixture of 12 mL hydrochloric acid, 6 mL nitric acid and 20 mL water. Heat on a sand bath for 15 minutes, boil to reduce the volume to 10 mL and cool. Add 1 mL hydrofluoric acid dropwise before boiling for a further 5 minutes. Cool and dilute to 50 mL in a plastic volumetric flask. For 10 $\mu g/g$ Ag, the solution concentration will be 4 $\mu g/mL$ Ag. #### **Standard Preparation** Prepare calibration standards containing 0, 0.2, 0.4, 0.6 μ g/mL Ag. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Cr | 2000 μg/mL | |------|-------------| | Ni | 10000 μg/mL | | Al | 900 μg/mL | | Ti | 500 μg/mL | | HF | 2 mL/100 mL | | HCI | 8mL/100 mL | | HN03 | 6mL/100 mL | ## Bi (Bismuth) ### **Typical Analysis** Bi 0.003% #### **Interferences** Non-atomic absorption due to the high solids concentration will necessitate the use of background correction. The high nickel/bismuth ratio will result in some chemical interference. This is overcome by adding the major matrix elements to the standards at the same concentration as that of the sample solution. #### **Sample Preparation** Dissolve 2.000 g sample in 12 mL hydrochloric acid, 6 mL
nitric acid and 20 mL water in a PTFE beaker. Evaporate the solution to 10–12 mL, cool, add 1 mL hydrofluoric acid dropwise and boil for 5 minutes. Cool, add 5 mL 1% boric acid solution and dilute to 50 mL. For 0.003% Bi the solution concentration will be approximately 1 μ g/mL Bi. ### **Standard Preparation** Prepare calibration standards containing 0, 1, 1.5, $2.0 \,\mu g/mL$ Bi. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Ni 22000 μg/mL | HCI 8 mL/100 mL | |----------------|------------------------------| | Cr 4000 µg/mL | HNO ₃ 4 mL/100 mL | | Al 2000 μg/mL | HF 2 mL/100 mL | | Ti 2000 μg/mL | 1% Boric acid, 10 mL/100 mL | ## Cr (Chromium) ## **Typical Analysis** Cr 15% #### Interferences As noted in standard conditions, interference from nickel will be observed. It is advisable to adjust the fuel flow until the absorbance obtained from a pure 1500 μ g/mL Cr solution and a sample of 1500 μ g/mL Cr plus nickel at the sample level produce the same absorbance. This procedure will be found to completely eliminate nickel interference. #### **Sample Preparation** Dissolve 1.000 g of fine turnings in 10 mL hydrochloric acid and 10 mL nitric acid. Heat gently until the cessation of nitrogen dioxide fumes. Transfer to a PTFE beaker and add 5 mL hydrofluoric acid in a dropwise manner. Ensure that the solution temperature does not exceed 30 °C. Transfer the solution to a 100 mL plastic volumetric flask and make up to volume with water. For 15% Cr, the solution concentration will be approximately 1500 µg/mL Cr. #### **Standard Preparation** Prepare calibration standards containing 0, 1000, 1500, 2000 µg/mL Cr. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Ni | 7000 μg/mL | |-----|--------------| | Fe | 1400 μg/mL | | Со | 100 μg/mL | | Si | 50 μg/mL | | HF | 5 mL/100 mL | | HCI | 10 mL/100 mL | # Fe (Iron) ### **Typical Analysis** Fe 14% ### Interference The high nickel/iron ratio can cause interference in an air-acetylene flame. The use of a nitrous oxide-acetylene flame is recommended to overcome this effect. #### **Sample Preparation** Refer to chromium in nickel alloys. Dilute 10 mL of sample solution to 100 mL. For 14% Fe, the final solution concentration will be 140 μ g/ mL Fe. ## **Standard Preparation** Prepare calibration standards containing 0, 50, 100, 150 μ g/mL Fe. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Cr | 150 μg/mL | |-----|---------------| | Ni | 700 μg/mL | | Со | 10 μg/mL | | HF | 0.5 mL/100 mL | | HCI | 0.5 mL/100 mL | # Pb (Lead) ### **Typical Analysis** Pb 0.0025% #### Interferences At 217 nm, non-atomic species in the air-acetylene flame may absorb strongly. Use a background corrector to check for the presence of non-atomic absorption. The 283.3 nm lead line normally has lower background absorption. #### **Sample Preparation** Refer to bismuth in nickel alloys. For 0.0025% Pb, the solution concentration will be approximately 1 μ g/mL Pb. ## **Standard Preparation** Prepare calibration standards containing 0, 1, 2, 3 µg/mL Pb. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Ni 22000 μg/mL | HCI 8 mL/100 mL | |----------------|------------------------------| | Cr 4000 µg/mL | HNO ₃ 4 mL/100 mL | | Al 2000 μg/mL | HF 2 mL/100 mL | | Ti 2000 μg/mL | Boric acid solution 0.1% | # Si (Silicon) #### **Typical Analysis** Si 0.5% #### **Sample Preparation** Refer to chromium in nickel alloy. For 0.5% Si, the solution concentration will be approximately 50 μ g/mL Si. #### **Standard Preparation** Prepare calibration standards containing 0, 25, 50, 75 μ g/mL Si. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Ni 7000 μg/mL | Co 100 μg/mL | |------------------|--------------| | Cr 1500 µg/mL | Si 50 μg/mL | | Fe 1400 µg/mL | | | HF 5 mL/100 mL | | | HCI 10 mL/100 mL | | # **Niobium Alloy** # Nb (Niobium) ### **Typical Analysis** Nb 52% #### **Sample Preparation** Dissolve 0.200 g samples in 10 mL hydrofluoric acid and 3 mL nitric acid in a PTFE beaker. Evaporate to dryness, cool and dissolve the solids in 4 mL hydrofluoric acid and 3 mL nitric acid. Dilute to 100 mL in a plastic volumetric flask. For 52% Nb in a 0.200 g sample, the solution concentration will be approximately 1000 μ g/mL Nb. #### **Standard Preparation** Prepare calibration standards containing 0, 500, 1000, 1500 μ g/mL Nb. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | HF | 4% | |------|------------| | HN03 | 3% | | Ti | 1000 μg/mL | # Ti (Titanium) ## **Typical Analysis** Ti 48% #### **Sample Preparation** For 48% Ti, the solution concentration will be approximately $950 \mu g/mL$ Ti. ### **Standard Preparation** Refer to niobium standard conditions. Prepare calibration standards containing 0, 500, 1000, 1500 µg/mL Ti. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | HF | 4% | |------------------|------------| | HNO ₃ | 4% | | Nb | 1000 μg/mL | # **Silver Alloys** ## Ag (Silver) ### **Typical Analysis** Ag 51% Cu 15% Zn 15% Cd 19% ### **Sample Preparation** Dissolve 1.000 g of alloy in 25 mL of 1:1 nitric acid and dilute to 100 mL. Further dilute 25 mL to 1 liter. For 51% Ag, the solution concentration will be approximately 130 μ g/mL Ag. #### **Standard Preparation** Prepare calibration standards containing 0, 100, 120, 130, 150 μ g/mL Ag. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: | Cu | 37 μg/mL | |------------------|---------------| | Zn | 37 μg/mL | | Cd | 47 μg/mL | | HNO ₃ | 0.3 mL/100 mL | ## **Tin Lead Solder** # Cu (Copper) #### Ranges in a typical sample | Sn | 30–60% | |----|-------------| | Pb | 30–60% | | Cu | 50–200 μg/g | | Al | 20—100 μg/g | #### **Sample Preparation** Place 0.5000 g sample in a beaker with 20 mL aqua regia (hydrochloric acid/nitric acid mixture in a ratio 3:1). Warm gently; do not allow to boil. Dilute the solution to 100 mL with distilled water. For a sample containing 120 $\mu g/g$ Cu, the solution will contain 0.6 $\mu g/mL$ Cu. #### **Standard Preparation** Prepare standards containing 0, 0.5, 1.0, 2.0 μ g/mL Cu. Each standard solution should contain the same reagents and major matrix elements as the sample at similar levels. For a typical sample, each standards will contain | Pb | 1500–3000 μg/mL | |------------------|-----------------| | Sn | 1500–3000 μg/mL | | HCI | 15 mL/100 mL | | HNO ₃ | 5 mL/100 mL | ## Sn (Tin) ### Ranges in a typical sample | Sn | 30–60% | |----|-------------| | Pb | 30–60% | | Cu | 50-200 μg/g | | Al | 20-100 μg/g | #### **Sample Preparation** Place 0.500 g sample in a beaker with 40 mL aqua regia (hydrochloric acid/nitric acid mixture in a ratio 3:1) and 50 mL 10% tartaric acid. Warm gently, but do not allow to boil. When the sample is dissolved, dilute to 500 mL. For a sample containing 30% Sn, the solution will contain 300 μ g/mL Sn. Ensure the Sn remains in solution. #### **Standard Preparation** Prepare standards containing 0, 100, 200, 400, 500 μ g/mL Sn. Each standard solution must contain the same reagents and major matrix elements as the sample at approximately the same concentration. For a typical sample, each standard will contain: | Pb | 300–5600 μg/mL | |------------------|----------------| | HCI | 6 mL/100 mL | | HNO ₃ | 2 mL/100 mL | | Tartaric acid | 1.0% | # **Zinc Alloy** ## AI (Aluminium) ### Range 2-8% AI ### **Typical Analysis** Al 4.7% Fe 0.015% Cd 0.0005% Mg 0.045% Cu 0.95% Pb 0.003% Zn remainder #### Interferences The large concentration of zinc in the sample matrix causes interferences to the determination of all of the trace elements. A range of composite standards, based upon a pure zinc matrix, is used to compensate for this interference. Aluminium is partially ionized in the nitrous oxide-acetylene flame. To suppress ionization, add potassium nitrate or chloride solution to give a final concentration of 2000 $\mu g/mL$ potassium in all solutions, including the blank. ### **Sample Preparation** Dissolve 1.000 g of sample in 10 mL hydrochloric acid in a covered beaker. Oxidize with 2 mL of 100 volume (30% w/v) hydrogen peroxide. Boil to destroy excess peroxide. Cool, transfer to a 100 mL volumetric flask and make up to volume with distilled water. For analysis, take 10 mL of the prepared solution and add 2 mL of a solution containing 100 g/L potassium. Dilute to 100 mL with distilled water. For 4.7% Al, the dilute solution will contain approximately 45 $\mu g/mL$ Al. ## **Composite Standard Preparation** Prepare a range of composite standards containing a series of concentrations of AI, Cd, Cu, Fe, Mg, Pb in a pure zinc matrix. The solutions are prepared according to the schedules given in Tables 1 and 2. #### Basic Matrix Dissolve replicate 1.000 g lots of
pure zinc in 10 mL hydrochloric acid. Oxidize with 2 mL of 100 volume (30% w/v) hydrogen peroxide. Boil to destroy excess peroxide. Cool and add aliquots of individual element solutions to give a range of standard concentrations in a final volume of 100 mL. Prepare addition solutions at concentrations given in Table 1. Add aliquots of the addition solutions to the basic matrix above. Make up to 100 mL to give the range of standards in Table 2. For example: #### Table 1 | Standard No. | S1 | S2 | S3 | S4 | S 5 | |------------------------|-----------------------|-----------|------|------|------------| | Base: Zn
(g/100 mL) | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | Trace element | Concentration (µg/mL) | | | | | | Al | 0 | 200 | 400 | 600 | 800 | | Cd | 0 | 0.03 | 0.04 | 0.05 | 0.06 | | Cu | 0 | 50 | 100 | 200 | 250 | | Mg | 0 | 0.5 | 1 | 2.5 | 5 | | Pb | 0 | 0.2 | 0.3 | 0.4 | 0.6 | For the determination of aluminium: Take 10 mL of each of the composite standards and add 2 mL of a solution containing 100 g/L potassium. Dilute to 100 mL with distilled water. The dilute composite standards will contain 0, 20, 40, 60, 80 μ g/mL AI with 2000 μ g/mL potassium added. ## Cd (Cadmium) #### Range 0.0003-0.0006% Cd #### **Interferences** A range of composite standards, prepared in a pure zinc matrix, is used to compensate for the large excess of zinc in the sample. #### **Sample Preparation** Refer to aluminium in zinc alloy. Use the undiluted solution; for 0.0005% Cd, the solution concentration will be approximately $0.05 \,\mu g/mL$ Cd. #### **Standard Preparation** Refer to aluminium in zinc alloy. The composite standards will contain 0, 0.03, 0.04, 0.05, 0.06 $\mu g/mL$ Cd. # Cu (Copper) ### Range 0.25-2.5% Cu #### **Interferences** A range of composite standards, prepared in a pure zinc matrix, is used to compensate for the large excess of zinc in the sample. A nitrous oxide-acetylene flame is used to minimize the effect of high Zn/Cu ratios which tend to depress the absorbance. #### **Sample Preparation** Refer to aluminium in zinc alloy. Use the dilute solution; for 0.95% Cu, the solution concentration will be approximately 10 μ g/mL Cu. ### **Standard Preparation** Refer to aluminium in zinc alloy. Use the dilute range of composite standards. The dilute composite standards will contain 0, 5, 10, 20, 25 μ g/mL Cu. ## Fe (Iron) #### Range 0.01-0.07% Fe #### Interferences A range of composite standards, prepared in a pure zinc matrix, is used to compensate for the large excess of zinc in the sample. #### **Sample Preparation** Refer to aluminium in zinc alloy. Use the undiluted solution; for 0.015% Fe, the solution concentration will be approximately $1.5~\mu g/mL$ Fe. #### **Standard Preparation** Refer to aluminium in zinc alloy. The composite standards will contain 0, 1, 3, 5, 7 μ g/mL Fe. ## Mg (Magnesium) #### Range 0.002-0.05% Mg #### **Interferences** A range of composite standards, prepared in a pure zinc matrix, is used to compensate for the large excess of zinc in the sample. A nitrous oxide-acetylene flame is used to overcome interference from the sample matrix. #### **Sample Preparation** Refer to aluminium in zinc alloy. Use the dilute solution; for 0.045% Mg, the solution concentration will be approximately 0.5 $\mu g/mL$ Mg. #### **Standard Preparation** Refer to aluminium in zinc alloy. Use the dilute range of composite standards. The dilute composite standards will contain 0.05, 0.1, 0.25, 0.5 $\mu g/mL$ Mg. ## Pb (Lead) #### Range 0.002-0.006% Pb #### Interferences A range of composite standards, prepared in a pure zinc matrix, is used to compensate for the large excess of zinc in the sample. At the 217.0 nm wavelength, non-atomic species in the air-acetylene flame absorb strongly. Use a background corrector to check for the presence of non-atomic absorption. ## **Sample Preparation** Refer to aluminium in zinc alloy. Use the undiluted solution; for 0.003% Pb, the solution concentration will be approximately $0.3 \mu g/mL$ Pb. #### **Standard Preparation** Refer to aluminium in zinc alloy. The composite standards will contain 0, 0.2, 0.3, 0.4, 0.6 $\mu g/mL$ Pb. ## **Petroleum** ## **Gasoline** ## Pb (Lead) ### Reference This method is adapted from: 1. Masayuki Kashiki, Seigo Yamazoe and Sohozo Oshima, Anal. Chim. Acta., 53, 95–100 (1971). #### **Sample Preparation** Dilute 1.00 mL of gasoline to 50 mL with a solution containing 5 mg iodine per 50 mL methyl isobutyl ketone. ### **Standard Preparation** Dilute a tetra methyl lead standard with the iodine-methyl isobutyl ketone solution to give standards containing 0.02, 0.04, 0.06 g/gallon Pb. These standards correspond to 1.0, 2.0, 3.0 g/gallon Pb in the undiluted gasoline. # **Lubricating Oils** The adjustable nebulizer should be used with organic solvents to reduce the liquid uptake to about 2 mL/min. # Al (Aluminium) #### Range $1-10 \mu g/g Al$ ### **Sample Preparation** Dissolve 10.00 g oil in Agilent A-solv solvent and dilute to 100 mL with the same solvent (Note 1 following). For 1 μ g/g AI, the solution concentration will be approximately 0.1 μ g/mL AI. #### Notes: - 1. Any suspended material present in the sample is filtered off and analyzed separately by ashing and solvent extraction. - 2. The method of standard additions is used. Standards are obtained by adding aliquots of known concentration to replicate sample solutions prior to making up to volume #### **Standard Preparation** Prepare a 10 μ g/mL Al solution using e an Agilent Al single element oil standard. Prepare addition standards containing 0. 0.1, 1 μ g/mL Al by pipetting aliquots of the 10 μ g/mL Al solution into replicate samples solutions prior to diluting to 100 mL with A-solv. ## B (Boron) ## **Typical Analysis** B 0.2% Zn 2% #### **Sample Preparation** Weigh duplicate 1.0 g samples of oil into 25 mL volumetric flasks and make up to volume with Agilent A-solv solvent. Ensure that the oil and A-solv are thoroughly mixed. ### **Standard Preparation** Prepare calibration standards of 100, 200 and 300 μ g/mL B by diluting the an Agilent B single element oil standard with Agilent A-solv solvent. ## Ba (Barium) ### Range 1-5% #### **Interferences** Some problems have been encountered in the determination of barium as organometallic salts because of the different nature of the alkyl groups. The addition of iodine at a level of 20 mg/100 mL has been found to overcome this effect. A sodium organometallic salt is added to overcome ionization interference. #### References 1. Kashiki, M., Yamayoe, S. and Oshima, S., Anal. Chim. Acta., 54, 533 (1971). ### **Sample Preparation** Dissolve 0.500 g of oil in Agilent A-solv solvent and dilute to 50 mL. Dilute 1 mL of this solution to 100 mL with an addition of 10 mL of 10000 $\mu g/mL$ sodium organometallic salt and 20 mg of iodine. For 5% Ba, the solution concentration will be approximately 5 μ g/mL. #### **Standard Preparation** Prepare calibration standards containing 0, 2.5, 5, 10 μ g/mL Ba, using an Agilent barium organometallic standard. The standard solutions must contain the same reagents and major matrix elements as the sample solutions at approximately the same concentration. For example, in the typical case above the standards would contain: Na $1000 \,\mu\text{g/mL}$ lodine $20 \,\text{mg}$ ## Fe (Iron) #### Range Suitable for levels down to $0.5 \mu g/g$. #### **Interferences** The organic solvent in this method acts as a supplementary fuel in the flame. It is essential to maintain thermal and optical equilibrium in the flame by aspirating a solvent blank continuously between samples. A slightly fuel rich air-acetylene or a nitrous oxide-acetylene flame should be used to overcome interference due to the different forms of iron present, i.e., wear particles and iron organometallic compounds. ### **Sample Preparation** Refer to aluminium in lubricating oil. The sample solution should be prepared in duplicate, adding 1 mL of 100 μg/mL Fe standard solution to one sample to give an additional concentration of 1 µg/mL Fe. For $0.5 \mu g/g$ Fe, the solution concentration will be approximately 0.05 µg/mL Fe. #### **Standard Preparation** Prepare a 100 µg/mL iron solution using an Agilent single element oil standard and diluting with A-solv solvent.fse # **Safety Notices** ## **CAUTION** A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a **CAUTION** notice until the indicated conditions are fully understood and met. ## WARNING A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met. ## **Important Warning** WARNING Eye, Explosion and Hearing Hazard Aspiration of perchloric acid and perchlorates into a nitrous oxideacetylene flame can create an explosion hazard, which can result in death or serious personal injury including temporary or permanent impairment of hearing. Do not use perchloric acid unless it is absolutely essential for sample preparation. If perchloric acid must be used, it may be possible to reduce the risk of an explosion by taking the following measures: - Use an air-acetylene flame instead of a nitrous oxideacetylene flame. - Reduce the concentrations of perchloric acid and metal in all analytical solutions to the lowest practical level. The concentration of perchloric acid should be reduced in the digestion stage and further reduced by extending the fuming stage. - Aspirate all solutions for the shortest practical period. - · Always aspirate distilled water between samples. Minimize the aspiration of air. - Use separate spray
chamber/liquid trap assemblies for perchloric acid analyses and organic solvent analyses to prevent perchloric acid from mixing with organic solvent residues. When solvent extractions of perchloric acid solution are performed, some of the acid may dissolve in the organic solvent that is subsequently aspirated. In addition, if the organic solution is aspirated whilst floating on the surface of the acid, do not allow the capillary tube to drop below the organic solvent and suck up aqueous perchloric acid.: - Clean the burner frequently never allow the burner to clog, and wash it thoroughly both inside and out. - Minimize the amount of acetone which is carried over with the acetylene by: - 'Cracking' the bottle before use by gently opening the valve to check for any drops or spray of acetone. Any bottle showing acetone should be returned to the supplier for replacement. - · Storing and using the bottles in the vertical position. - Using only one instrument per bottle. - · Using only 'instrument' grade acetylene. - Replacing bottles when the pressure drops to 750 kPa (100 psi). - Ensure that all safety covers are in position, and wear approved ear protectors and safety glasses. - Ensure the pressure relief bung of the spray chamber can be easily removed by hand. Refit the bung according to the operation manual. ## **General References** The following references are recommended for further information about Flame Atomic Absorption Spectroscopy. - Dean, John A. and Rains, Theodore C., 'Flame Emission and Atomic Absorption Spectroscopy', Volume 1 — Theory, Volume 2 — Components and Techniques, Marcel Dekker. - Mavrodineanu, R. and Boiteux, H., 'Flame Spectroscopy', John Wiley and Sons. - 3. Angino, E.F. and Billings, G.K., 'Atomic Absorption Spectrometry in Geology', Elsevier. - L'vov, B.V., 'Atomic Absorption Spectrochemical Analysis', Adam Hilger, London. - 5. Price, W.J., 'Spectrochemical Analysis by Atomic Absorption', Heydon, ISBN 0 85501 455 5. - Van Loon, J.C., 'Analytical Atomic Absorption Spectroscopy. Selected Methods', Academic Press, ISBN 0 12 714050 6. - 7. Welz, B., 'Atomic Absorption Spectrometry.', 2nd Edn., VCH. ISBN 0 89573 418 4. - Everett, K. and Gray, F.A., 'Handling perchloric acid and perchlorates', in 'Handbook of laboratory safety', Steere, N.V., Ed., 2nd ed., Chemical Rubber Co., Cleveland, Ohio, (1971). - 9. Michelotti, F.W., 'Hazardous Chemical Safety in the Laboratory', Anal. Chem., 51, 441A (1979). # www.agilent.com/chem/aas Agilent shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance or use of this material. Information, descriptions, and specifications in this publication are subject to change without notice. © Agilent Technologies, Inc. 2017 Published May 23, 2017 Publication number: 5991-8145EN